Activity

Filter

Cancel
Date Panel Item Activity
33 actions
BabyScreen+ newborn screening v1.4 PHOX2B Zornitza Stark Phenotypes for gene: PHOX2B were changed from Central hypoventilation syndrome to Central hypoventilation syndrome, congenital, 1, with or without Hirschsprung disease, MIM# 209880
BabyScreen+ newborn screening v1.2 PHOX2B Zornitza Stark reviewed gene: PHOX2B: Rating: RED; Mode of pathogenicity: None; Publications: ; Phenotypes: Central hypoventilation syndrome, congenital, 1, with or without Hirschsprung disease, MIM# 209880; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
BabyScreen+ newborn screening v0.1862 HBB Zornitza Stark changed review comment from: Well established gene-disease associations.

Congenital onset.

Both sickle cell anaemia and beta thalassaemia are treatable disorders.

Beta thal: gene therapy (betibeglogene autotemcel - clinical trial), red cell transfusions, bone marrow transplantation (Hematopoietic Stem Cell Transplantation (HSCT)), Luspatercept

Sickle cell: glutamine, voxelotor, crizanlizumab, hydroxyurea, ,red cell transfusions, bone marrow transplantation (Hematopoietic Stem Cell Transplantation (HSCT)), gene therapy (BCH-BB694 BCL11A shmiR lentiviral vector - clinical trial and autologous CRISPR-Cas9-edited CD34+ hematopoietic stem and progenitor cells) - clinical trial)

Some of the beta-that variants are structural -- ability to detect reliably? For review.; to: Well established gene-disease associations.

Congenital onset.

Both sickle cell anaemia and beta thalassaemia are treatable disorders.

Beta thal: gene therapy (betibeglogene autotemcel - clinical trial), red cell transfusions, bone marrow transplantation (Hematopoietic Stem Cell Transplantation (HSCT)), Luspatercept

Sickle cell: glutamine, voxelotor, crizanlizumab, hydroxyurea, ,red cell transfusions, bone marrow transplantation (Hematopoietic Stem Cell Transplantation (HSCT)), gene therapy (BCH-BB694 BCL11A shmiR lentiviral vector - clinical trial and autologous CRISPR-Cas9-edited CD34+ hematopoietic stem and progenitor cells) - clinical trial)

Some of the beta-that variants are structural -- ability to detect reliably? For review.

We are only able to reliably screen for the HbS association.
BabyScreen+ newborn screening v0.1860 HBA1 Zornitza Stark changed review comment from: Well established gene-disease association.

Congenital onset.

Treatable: transfusions, bone marrow transplant.

However, there is widespread screening in pregnancy. Also note mutational spectrum includes SVs/CNVs: can we reliably diagnose? For review.; to: Well established gene-disease association.

Congenital onset.

Treatable: transfusions, bone marrow transplant.

However, there is widespread screening in pregnancy. Also note mutational spectrum includes SVs/CNVs: can we reliably diagnose?

Exclude for now due to technical concerns.
BabyScreen+ newborn screening v0.1821 RET Zornitza Stark changed review comment from: Established gene-disease associations.

Assessed as 'strong actionability' in paediatric patients by ClinGen.

Onset of MEN2A is typically prior to age 35, usually between ages 5 and 25. MTC is generally the first manifestation in MEN2A with probands presenting with a neck mass or neck pain. Metastatic spread is common. MTC is the most common cause of death in patients with MEN2A.

PHEOs usually present after MTC or concomitantly but are the first manifestation in 13-27% of individuals; they occur in about 50% of individuals. PHEOs are diagnosed at an earlier age, have subtler symptoms, and are more likely to be bilateral than sporadic tumors, with malignant transformation occurring in about 4% of cases. Even without malignant progression, PHEOs can be lethal from intractable hypertension or anesthesia-induced hypertensive crises. Depending on the risk category of the RET pathogenic variant, PHEOs have been observed as early as 5 years of age.

For MEN2A children with a “high-risk” pathogenic variant, patients should undergo annual ultrasound and screening for increased calcitonin levels starting at 3 years of age and proceed to thyroidectomy when elevated levels are detected or at 5 years of age. For patients with a “moderate-risk” pathogenic variant, considering the clinical variability of disease expression in family members in this category, annual physical examination, cervical US, and measurement of serum calcitonin levels, should begin at 5 years of age.

Biochemical surveillance for PHPT should begin at 11 years and 16 years of age for patients with high- and moderate-risk variants, respectively; this screening is recommended annually for “high-risk” patients and at least every 2-3 years in “moderate-risk” patients.

Biochemical screening for PHEO should begin at age 11 for patients with high-risk variants and age 16 for patients with moderate-risk variants.

For review: actionable in first 5 years of life?; to: Established gene-disease associations.

Assessed as 'strong actionability' in paediatric patients by ClinGen.

Onset of MEN2A is typically prior to age 35, usually between ages 5 and 25. MTC is generally the first manifestation in MEN2A with probands presenting with a neck mass or neck pain. Metastatic spread is common. MTC is the most common cause of death in patients with MEN2A.

PHEOs usually present after MTC or concomitantly but are the first manifestation in 13-27% of individuals; they occur in about 50% of individuals. PHEOs are diagnosed at an earlier age, have subtler symptoms, and are more likely to be bilateral than sporadic tumors, with malignant transformation occurring in about 4% of cases. Even without malignant progression, PHEOs can be lethal from intractable hypertension or anesthesia-induced hypertensive crises. Depending on the risk category of the RET pathogenic variant, PHEOs have been observed as early as 5 years of age.

For MEN2A children with a “high-risk” pathogenic variant, patients should undergo annual ultrasound and screening for increased calcitonin levels starting at 3 years of age and proceed to thyroidectomy when elevated levels are detected or at 5 years of age. For patients with a “moderate-risk” pathogenic variant, considering the clinical variability of disease expression in family members in this category, annual physical examination, cervical US, and measurement of serum calcitonin levels, should begin at 5 years of age.

Biochemical surveillance for PHPT should begin at 11 years and 16 years of age for patients with high- and moderate-risk variants, respectively; this screening is recommended annually for “high-risk” patients and at least every 2-3 years in “moderate-risk” patients.

Biochemical screening for PHEO should begin at age 11 for patients with high-risk variants and age 16 for patients with moderate-risk variants.

For review: some actionability in first 5 years, variants can be stratified in terms of risk.
BabyScreen+ newborn screening v0.1753 OAT Zornitza Stark gene: OAT was added
gene: OAT was added to gNBS. Sources: ClinGen
for review, treatable, metabolic tags were added to gene: OAT.
Mode of inheritance for gene: OAT was set to BIALLELIC, autosomal or pseudoautosomal
Phenotypes for gene: OAT were set to Gyrate atrophy of choroid and retina with or without ornithinemia MIM#258870
Review for gene: OAT was set to GREEN
Added comment: Rated as 'moderate actionability' in paediatric patients by ClinGen.

GA due to deficiency of the enzyme ornithine aminotransferase (OAT) is characterized by a triad of progressive chorioretinal degeneration, early cataract formation, and type II muscle fiber atrophy. GA first presents as night blindness and constriction of the visual field caused by sharply demarcated circular areas of chorioretinal atrophy in the periphery. Atrophic areas progressively increase, coalesce, and spread towards the macula leading to central visual loss and blindness (vision less than 20/200).

Age at diagnosis ranges from 1 month to 44 years. The condition is characterized by the development of chorioretinal atrophic patches that start in the mid-peripheral retina in the first decade of life. Myopia, night blindness, changes in the macula (including cystic changes), and visual field affection usually start in the first or second decade. Most patients with GA have posterior subcapsular cataracts by the end of the second decade. Irreversible loss of vision and blindness generally occurs between 40 and 55 years of age but is highly variable.

Treatment of GA consists mainly of dietary modifications to help lower elevated systemic ornithine levels. Restriction of dietary arginine, a precursor of ornithine, appears to have therapeutic value. Pediatric patients undergoing arginine restriction should receive enough calories in their diet supplemented by essential amino acids, vitamins, and minerals to avoid malnutrition and excessive break down of endogenous proteins.

A long-term observational study of 27 patients with GA, 17 who complied with the arginine-restricted diet and 10 who were noncompliant, found that at 14 years follow-up the rates of vision loss were significantly slower in the compliant group for 3 of the 4 outcome measures, when adjusted for age.
Sources: ClinGen
BabyScreen+ newborn screening v0.1740 TGFB2 Zornitza Stark gene: TGFB2 was added
gene: TGFB2 was added to gNBS. Sources: ClinGen
Mode of inheritance for gene: TGFB2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Phenotypes for gene: TGFB2 were set to Loeys-Dietz syndrome 4, MIM# 614816
Review for gene: TGFB2 was set to GREEN
Added comment: Rated as 'strong actionability' in paediatric patients by ClinGen.

Individuals with LDS are predisposed to widespread and aggressive arterial aneurysms which are the major source of morbidity and mortality. Aortic growth can be faster than 10mm per year. Aortic dissection has been observed in early childhood, and the mean age of death is 26 years. Other life-threatening manifestations include spontaneous rupture of the spleen, bowel, and uterine rupture during pregnancy.

Prophylactic surgical repair is typically recommended at an aortic diameter of ≥ 4.2 cm.

Beta-blockers or other medications can be used to reduce hemodynamic stress.

Consider Medicalert bracelet.

Use of subacute bacterial endocarditis prophylaxis should be considered for individuals with connective tissue disorders and documented evidence of mitral and/or aortic regurgitation who are undergoing dental work or other procedures expected to contaminate the bloodstream with bacteria.

Because of a high risk of cervical spine instability, a flexion and extension x-ray of the cervical spine should be performed prior to intubation or any other procedure involving manipulation of the neck.
Sources: ClinGen
BabyScreen+ newborn screening v0.1714 SPR Zornitza Stark Tag treatable tag was added to gene: SPR.
Tag neurological tag was added to gene: SPR.
BabyScreen+ newborn screening v0.1694 F2 Zornitza Stark Phenotypes for gene: F2 were changed from Prothrombin deficiency, MIM#613679 to Dysprothrombinemia MIM#613679; Hypoprothrombinemia MIM#613679; Thrombophilia due to thrombin defect MIM#188050
BabyScreen+ newborn screening v0.1691 F2 Zornitza Stark reviewed gene: F2: Rating: RED; Mode of pathogenicity: None; Publications: ; Phenotypes: Dysprothrombinemia MIM#613679, Hypoprothrombinemia MIM#613679, Thrombophilia due to thrombin defect MIM#188050; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
BabyScreen+ newborn screening v0.1632 SPR John Christodoulou reviewed gene: SPR: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 28189489, PMID: 32456656; Phenotypes: ID, dystonia; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
BabyScreen+ newborn screening v0.1425 SPRED1 Seb Lunke Marked gene: SPRED1 as ready
BabyScreen+ newborn screening v0.1425 SPRED1 Seb Lunke Gene: spred1 has been classified as Red List (Low Evidence).
BabyScreen+ newborn screening v0.1425 SPRED1 Seb Lunke Phenotypes for gene: SPRED1 were changed from Legius syndrome to Legius syndrome, MIM# 611431
BabyScreen+ newborn screening v0.1424 SPRED1 Seb Lunke Classified gene: SPRED1 as Red List (low evidence)
BabyScreen+ newborn screening v0.1424 SPRED1 Seb Lunke Gene: spred1 has been classified as Red List (Low Evidence).
BabyScreen+ newborn screening v0.1423 SPRED1 Seb Lunke reviewed gene: SPRED1: Rating: RED; Mode of pathogenicity: None; Publications: ; Phenotypes: Legius syndrome, MIM# 611431; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
BabyScreen+ newborn screening v0.1420 SPR Seb Lunke Marked gene: SPR as ready
BabyScreen+ newborn screening v0.1420 SPR Seb Lunke Gene: spr has been classified as Green List (High Evidence).
BabyScreen+ newborn screening v0.1420 SPR Seb Lunke Phenotypes for gene: SPR were changed from Sepiapterin reductase deficiency to Dystonia, dopa-responsive, due to sepiapterin reductase deficiency, MIM# 612716
BabyScreen+ newborn screening v0.1419 SPR Seb Lunke reviewed gene: SPR: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Dystonia, dopa-responsive, due to sepiapterin reductase deficiency, MIM# 612716; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
BabyScreen+ newborn screening v0.1169 TPM3 Zornitza Stark Phenotypes for gene: TPM3 were changed from Nemaline myopathy; Congenital fiber-type disproportion myopathy to CAP myopathy 1, MIM# 609284; Myopathy, congenital, with fiber-type disproportion, MIM# 255310; Nemaline myopathy 1, autosomal dominant or recessive, MIM# 609284
BabyScreen+ newborn screening v0.946 ENPP1 Zornitza Stark changed review comment from: Bi-allelic variants:
GACI: well established gene-disease association, multiple families and mouse models.

Hypophosphataemic rickets: multiple families reported, some with features of GACI.

Reported variants are spread throughout the phosphodiesterase catalytic domain and nuclease-like domain. No genotype-phenotype correlation, variability even within the same family. These likely represent a spectrum of a single disorder, rather than two distinct disorders.

Should be able to distinguish clinically.

Treatment: etidronate, anti-hypertensive, calcitriol and oral phosphate supplements; to: Bi-allelic variants:
GACI: well established gene-disease association, multiple families and mouse models.

Hypophosphataemic rickets: multiple families reported, some with features of GACI.

Reported variants are spread throughout the phosphodiesterase catalytic domain and nuclease-like domain. No genotype-phenotype correlation, variability even within the same family. These likely represent a spectrum of a single disorder, rather than two distinct disorders.

Should be able to distinguish clinically.

Onset is congenital/early infancy.

Treatment: etidronate, anti-hypertensive, calcitriol and oral phosphate supplements
BabyScreen+ newborn screening v0.625 SELENON Seb Lunke Phenotypes for gene: SELENON were changed from Muscular dystrophy, rigid spine; Myopathy, congenital, with fiber-type disproportion to Myopathy, congenital, with fiber-type disproportion, MIM# 255310
BabyScreen+ newborn screening v0.622 SELENON Seb Lunke reviewed gene: SELENON: Rating: RED; Mode of pathogenicity: None; Publications: ; Phenotypes: Myopathy, congenital, with fiber-type disproportion, MIM# 255310; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal
BabyScreen+ newborn screening v0.0 NRG1 Zornitza Stark gene: NRG1 was added
gene: NRG1 was added to gNBS. Sources: Expert Review Red,BabySeq Category C gene
Mode of inheritance for gene: NRG1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Phenotypes for gene: NRG1 were set to Hirschsprung disease
BabyScreen+ newborn screening v0.0 GDNF Zornitza Stark gene: GDNF was added
gene: GDNF was added to gNBS. Sources: Expert Review Red,BabySeq Category C gene
Mode of inheritance for gene: GDNF was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Phenotypes for gene: GDNF were set to Hirschsprung disease; Central hypoventilation syndrome
BabyScreen+ newborn screening v0.0 ECE1 Zornitza Stark gene: ECE1 was added
gene: ECE1 was added to gNBS. Sources: Expert Review Red,BabySeq Category C gene
Mode of inheritance for gene: ECE1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Phenotypes for gene: ECE1 were set to Hirschsprung disease
BabyScreen+ newborn screening v0.0 ACTA1 Zornitza Stark gene: ACTA1 was added
gene: ACTA1 was added to gNBS. Sources: Expert Review Red,BabySeq Category A gene,BabySeq Category C gene
Mode of inheritance for gene: ACTA1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Phenotypes for gene: ACTA1 were set to Nemaline myopathy; Congenital myopathy with fiber type disproportion
BabyScreen+ newborn screening v0.0 TPM3 Zornitza Stark gene: TPM3 was added
gene: TPM3 was added to gNBS. Sources: BabySeq Category A gene,Expert Review Green
Mode of inheritance for gene: TPM3 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Phenotypes for gene: TPM3 were set to Nemaline myopathy; Congenital fiber-type disproportion myopathy
BabyScreen+ newborn screening v0.0 SPRED1 Zornitza Stark gene: SPRED1 was added
gene: SPRED1 was added to gNBS. Sources: BabySeq Category A gene,Expert Review Green
Mode of inheritance for gene: SPRED1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Phenotypes for gene: SPRED1 were set to Legius syndrome
BabyScreen+ newborn screening v0.0 SPR Zornitza Stark gene: SPR was added
gene: SPR was added to gNBS. Sources: BabySeq Category A gene,Expert Review Green
Mode of inheritance for gene: SPR was set to BIALLELIC, autosomal or pseudoautosomal
Phenotypes for gene: SPR were set to Sepiapterin reductase deficiency
BabyScreen+ newborn screening v0.0 SELENON Zornitza Stark gene: SELENON was added
gene: SELENON was added to gNBS. Sources: BabySeq Category A gene,Expert Review Green
Mode of inheritance for gene: SELENON was set to BIALLELIC, autosomal or pseudoautosomal
Phenotypes for gene: SELENON were set to Muscular dystrophy, rigid spine; Myopathy, congenital, with fiber-type disproportion