Activity

Filter

Cancel
Date Panel Item Activity
7 actions
Aminoacidopathy v1.122 PYCR2 Zornitza Stark Marked gene: PYCR2 as ready
Aminoacidopathy v1.122 PYCR2 Zornitza Stark Gene: pycr2 has been classified as Green List (High Evidence).
Aminoacidopathy v1.122 PYCR2 Zornitza Stark Classified gene: PYCR2 as Green List (high evidence)
Aminoacidopathy v1.122 PYCR2 Zornitza Stark Gene: pycr2 has been classified as Green List (High Evidence).
Aminoacidopathy v1.113 PYCR2 Sangavi Sivagnanasundram edited their review of gene: PYCR2: Changed rating: GREEN
Aminoacidopathy v1.113 PYCR2 Sangavi Sivagnanasundram changed review comment from: Has been reported in 10 consanguineous families with different variants (frameshift, missense, splice). The affected individuals all had neurological clinical presentation however upon biochemical assessment, plasma proline levels were normal (showed no depletion). There is not enough evidence to indicate that these individuals have a phenotype consistent with an inborn error of amino acid metabolism.
Sources: Other; to: Has been reported in 10 consanguineous families with different variants (frameshift, missense, splice). The affected individuals all had neurological clinical presentation along with other phenotypes including failure to thrive.

Sources: Other
Aminoacidopathy v1.113 PYCR2 Sangavi Sivagnanasundram gene: PYCR2 was added
gene: PYCR2 was added to Aminoacidopathy. Sources: Other
Mode of inheritance for gene: PYCR2 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: PYCR2 were set to 25865492; 27130255
Phenotypes for gene: PYCR2 were set to Hypomyelinating leukodystrophy 10 MONDO:0014632; Disorders of ornithine, proline and hydroxyproline metabolism
Review for gene: PYCR2 was set to RED
Added comment: Has been reported in 10 consanguineous families with different variants (frameshift, missense, splice). The affected individuals all had neurological clinical presentation however upon biochemical assessment, plasma proline levels were normal (showed no depletion). There is not enough evidence to indicate that these individuals have a phenotype consistent with an inborn error of amino acid metabolism.
Sources: Other