Activity

Filter

Cancel
Date Panel Item Activity
37 actions
Mendeliome v1.1306 KDM2B Ain Roesley edited their review of gene: KDM2B: Changed phenotypes: neurodevelopmental disorder MONDO#0700092, KDM2B-related
Mendeliome v1.1306 KDM2B Ain Roesley Phenotypes for gene: KDM2B were changed from neurodevelopmental disorder MONDO#070009, KDM2B-related to neurodevelopmental disorder MONDO#0700092, KDM2B-related
Mendeliome v1.1039 KDM2A Zornitza Stark Marked gene: KDM2A as ready
Mendeliome v1.1039 KDM2A Zornitza Stark Gene: kdm2a has been classified as Green List (High Evidence).
Mendeliome v1.1039 KDM2A Zornitza Stark Phenotypes for gene: KDM2A were changed from Neurodevelopmental disorder to Neurodevelopmental disorder, MONDO:0700092, KDM2A-related
Mendeliome v1.1008 KDM2A Chirag Patel Classified gene: KDM2A as Green List (high evidence)
Mendeliome v1.1008 KDM2A Chirag Patel Gene: kdm2a has been classified as Green List (High Evidence).
Mendeliome v1.1007 KDM2A Chirag Patel gene: KDM2A was added
gene: KDM2A was added to Mendeliome. Sources: Other
Mode of inheritance for gene: KDM2A was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Phenotypes for gene: KDM2A were set to Neurodevelopmental disorder
Review for gene: KDM2A was set to GREEN
gene: KDM2A was marked as current diagnostic
Added comment: ESHG 2023:
14 patients with de novo HTZ variants in KDM2A (5 x truncating, 9 x missense)
Presentation with DD, ID (mild), seizures, growth retardation, and dysmorphism.

Functional studies:
-patient blood showed aberrant genome wide methylation profile - potential episignature
-HEK293T cells showed altered subcellular localisation of KDM2A
-Drosophila models showed variants caused neurotoxicity
Sources: Other
Mendeliome v1.504 KDM2B Ain Roesley changed review comment from: 27 individuals from 22 families were recruited
12 SNV classified LP/P, all de novo except 2 familial cases
5 variants were classified as VUS if more than 1 het is present in gnomAD or does result in a KDM2B-specific episignature (therefore suggesting normal function)
Sources: Literature; to: 27 individuals from 22 families were recruited
13 SNV classified LP/P, all de novo except 2 familial cases
5 variants were classified as VUS if more than 1 het is present in gnomAD or does result in a KDM2B-specific episignature (therefore suggesting normal function)
Sources: Literature
Mendeliome v1.504 KDM2B Ain Roesley Marked gene: KDM2B as ready
Mendeliome v1.504 KDM2B Ain Roesley Gene: kdm2b has been classified as Green List (High Evidence).
Mendeliome v1.504 KDM2B Ain Roesley Classified gene: KDM2B as Green List (high evidence)
Mendeliome v1.504 KDM2B Ain Roesley Gene: kdm2b has been classified as Green List (High Evidence).
Mendeliome v1.503 KDM2B Ain Roesley gene: KDM2B was added
gene: KDM2B was added to Mendeliome. Sources: Literature
Mode of inheritance for gene: KDM2B was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: KDM2B were set to 36322151
Phenotypes for gene: KDM2B were set to neurodevelopmental disorder MONDO#070009, KDM2B-related
Review for gene: KDM2B was set to GREEN
gene: KDM2B was marked as current diagnostic
Added comment: 27 individuals from 22 families were recruited
12 SNV classified LP/P, all de novo except 2 familial cases
5 variants were classified as VUS if more than 1 het is present in gnomAD or does result in a KDM2B-specific episignature (therefore suggesting normal function)
Sources: Literature
Mendeliome v0.8991 OPDM2 Bryony Thompson Marked STR: OPDM2 as ready
Mendeliome v0.8991 OPDM2 Bryony Thompson Str: opdm2 has been classified as Green List (High Evidence).
Mendeliome v0.8991 OPDM2 Bryony Thompson Classified STR: OPDM2 as Green List (high evidence)
Mendeliome v0.8991 OPDM2 Bryony Thompson Str: opdm2 has been classified as Green List (High Evidence).
Mendeliome v0.8990 OPDM2 Bryony Thompson STR: OPDM2 was added
STR: OPDM2 was added to Mendeliome. Sources: Literature
Mode of inheritance for STR: OPDM2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for STR: OPDM2 were set to 32413282; 33374016
Phenotypes for STR: OPDM2 were set to Oculopharyngodistal myopathy 2 MIM#618940
Review for STR: OPDM2 was set to GREEN
STR: OPDM2 was marked as clinically relevant
Added comment: NM_005716.4:c.-211GGC[X]
>15 Chinese families/probands with a heterozygous trinucleotide repeat expansion (CGG(n)) in 5'UTR exon 1 of the GIPC1 gene. The expansion was found by a combination of linkage analysis, whole-exome sequencing, long-range sequencing, and PCR analysis, and segregated with the disorder in the family. Repeat lengths in the patients ranged from 70 to 138. Normal repeat lengths ranged from 12 to 32.
Sources: Literature
Mendeliome v0.8989 GIPC1 Bryony Thompson Added comment: Comment on list classification: Added to panel as an STR under OPDM2
Mendeliome v0.8736 PIDD1 Zornitza Stark gene: PIDD1 was added
gene: PIDD1 was added to Mendeliome. Sources: Expert Review
Mode of inheritance for gene: PIDD1 was set to BIALLELIC, autosomal or pseudoautosomal
Publications for gene: PIDD1 were set to 28397838; 29302074; 33414379; 34163010
Phenotypes for gene: PIDD1 were set to Global developmental delay; Intellectual disability; Seizures; Autism; Behavioral abnormality; Psychosis; Pachygyria; Lissencephaly; Abnormality of the corpus callosum
Review for gene: PIDD1 was set to GREEN
Added comment: There is enough evidence to include this gene in the current panel with green rating.

Biallelic PIDD1 pathogenic variants have been reported in 26 individuals (11 families) with DD (all), variable degrees of ID (mild to severe), behavioral (eg. aggression/self-mutilation in several, ADHD) and/or psychiatric abnormalities (ASD, psychosis in 5 belonging to 3 families), well-controlled epilepsy is some (9 subjects from 6 families) and MRI abnormalities notably abnormal gyration pattern (pachygyria with predominant anterior gradient) as well as corpus callosum anomalies (commonly thinning) in several. Dysmorphic features have been reported in almost all, although there has been no specific feature suggested.

The first reports on the phenotype associated with biallelic PIDD1 mutations were made by Harripaul et al (2018 - PMID: 28397838) and Hu et al (2019 - PMID: 29302074) [both studies investigating large cohorts of individuals with ID from consanguineous families].

Sheikh et al (2021 - PMID: 33414379) provided details on the phenotype of 15 individuals from 5 families including those from the previous 2 reports and studied provided evidence on the role of PIDD1 and the effect of variants.

Zaki et al (2021 - PMID: 34163010) reported 11 additional individuals from 6 consanguineous families, summarize the features of all subjects published in the literature and review the neuroradiological features of the disorder.

PIDD1 encodes p53-induced death domain protein 1. The protein is part of the PIDDosome, a multiprotein complex also composed of the bipartite linker protein CRADD (also known as RAIDD) and the proform of caspase-2 and induces apoptosis in response to DNA damage.

There are 5 potential PIDD1 mRNA transcript variants with NM_145886.4 corresponding to the longest. Similar to the protein encoded by CRADD, PIDD1 contains a death domain (DD - aa 774-893). Constitutive post-translational processing gives PIDD1-N, PIDD1-C the latter further processed into PIDD1-CC (by auto-cleavage). Serine residues at pos. 446 and 588 are involved in this autoprocessing generating PIDD1-C (aa 446-910) and PIDD1-CC (aa 774-893). The latter is needed for caspase-2 activation.

Most (if not all) individuals belonged to consanguineous families of different origins and harbored pLoF or missense variants.

Variants reported so far include : c.2587C>T; p.Gln863* / c.1909C>T ; p.Arg637* / c.2443C>T / p.Arg815Trp / c.2275-1G>A which upon trap assay was shown to lead to skipping of ex15 with direct splicing form exon14 to the terminal exon 16 (resulting to p.Arg759Glyfs*1 with exlcusion of the entire DD) / c.2584C>T; p.Arg862Trp / c.1340G>A; p.Trp447* / c.2116_2120del; p.Val706His*, c.1564_1565del; p.Gly602fs*26

Evidence so far provided includes:
- Biallelic CRADD variants cause a NDD disorder and a highly similar gyration pattern.
- Confirmation of splicing effect (eg. for c.2275-1G>A premature stop in position 760) or poor expression (NM_145886.3:c.2587C>T; p.Gln863*). Arg815Trp did not affect autoprocessing or protein stability.
- Abnormal localization pattern, loss of interaction with CRADD and failure to activate caspase-2 (MDM2 cleavage assay) [p.Gln863* and Arg815Trp]
- Available expression data from GTEx (PIDD1 having broad expression in multiple tissues, but higher in brain cerebellum) as well as BrainSpan and PsychEncode studies suggesting high coexpression of PIDD1, CRADD and CASP2 in many regions in the developing human brain.
- Variants in other genes encoding proteins interacting with PIDD1 (MADD, FADD, DNAJ, etc) are associated with NDD.

Pidd-1 ko mice (ex3-15 removal) lack however CNS-related phenotypes. These show decreased anxiety but no motor anomalies. This has also been the case with Cradd-/- mice displaying no significant CNS phenotypes without lamination defects.

There is currently no associated phenotype in OMIM. PIDD1 is listed in the DD panel of G2P (PIDD1-related NDD / biallelic / loss of function / probable) . SysID includes PIDD1 among the current primary ID genes.
Sources: Expert Review
Mendeliome v0.7258 MDM2 Zornitza Stark Marked gene: MDM2 as ready
Mendeliome v0.7258 MDM2 Zornitza Stark Gene: mdm2 has been classified as Red List (Low Evidence).
Mendeliome v0.7258 MDM2 Zornitza Stark Phenotypes for gene: MDM2 were changed from to Lessel-Kubisch syndrome, MIM# 618681
Mendeliome v0.7257 MDM2 Zornitza Stark Publications for gene: MDM2 were set to
Mendeliome v0.7256 MDM2 Zornitza Stark Mode of inheritance for gene: MDM2 was changed from Unknown to BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.7255 MDM2 Zornitza Stark Classified gene: MDM2 as Red List (low evidence)
Mendeliome v0.7255 MDM2 Zornitza Stark Gene: mdm2 has been classified as Red List (Low Evidence).
Mendeliome v0.7254 MDM2 Chern Lim reviewed gene: MDM2: Rating: AMBER; Mode of pathogenicity: None; Publications: 28846075; Phenotypes: ?Lessel-Kubisch syndrome (MIM#618681); Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.6844 DM2 Bryony Thompson Marked STR: DM2 as ready
Mendeliome v0.6844 DM2 Bryony Thompson Str: dm2 has been classified as Green List (High Evidence).
Mendeliome v0.6844 DM2 Bryony Thompson Classified STR: DM2 as Green List (high evidence)
Mendeliome v0.6844 DM2 Bryony Thompson Str: dm2 has been classified as Green List (High Evidence).
Mendeliome v0.6843 DM2 Bryony Thompson STR: DM2 was added
STR: DM2 was added to Mendeliome. Sources: Expert list
Mode of inheritance for STR: DM2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for STR: DM2 were set to 20301639; 29325606
Phenotypes for STR: DM2 were set to Myotonic dystrophy 2 MIM#602668
Review for STR: DM2 was set to GREEN
STR: DM2 was marked as clinically relevant
Added comment: HGVS nomenclature: NM_003418.4:c.-14-833_-14-830[X]
Toxic gain of function RNA expected mechanism of disease
Normal: ≤30 uninterrupted CCTG repeats, 11-26 CCTG repeats with any GCTC or TCTG interruptions
Unknown significance (normal vs. mutable): 27-29 CCTG repeats
Mutable normal (premutation) alleles. ~30-~54 CCTG repeats
Unknown significance (premutation vs pathogenic): ~55-74 CCTG repeats
Pathogenic: ~75-11,000 CCTG repeats
Sources: Expert list
Mendeliome v0.3376 GIPC1 Zornitza Stark gene: GIPC1 was added
gene: GIPC1 was added to Mendeliome. Sources: Literature
5'UTR, STR tags were added to gene: GIPC1.
Mode of inheritance for gene: GIPC1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Publications for gene: GIPC1 were set to 32413282
Phenotypes for gene: GIPC1 were set to Oculopharyngodistal myopathy-2 (OPDM2), MIM#618940
Review for gene: GIPC1 was set to AMBER
Added comment: 19 families reported with heterozygous trinucleotide repeat expansion in the 5-prime untranslated region and onset of distal muscle weakness, mainly of the lower limbs, and/or ophthalmoplegia in the second or third decades of life. Note this is unlikely to be tractable currently by most NGS assays.
Sources: Literature
Mendeliome v0.2485 MDM2 Belinda Chong reviewed gene: MDM2: Rating: RED; Mode of pathogenicity: None; Publications: 28846075; Phenotypes: ?Lessel-Kubisch syndrome 618681; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal
Mendeliome v0.0 MDM2 Zornitza Stark gene: MDM2 was added
gene: MDM2 was added to Mendeliome_VCGS. Sources: Expert Review Green,Victorian Clinical Genetics Services
Mode of inheritance for gene: MDM2 was set to Unknown