Date | Panel | Item | Activity | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mendeliome v1.2293 | HECTD1 |
Chirag Patel gene: HECTD1 was added gene: HECTD1 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: HECTD1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: HECTD1 were set to PMID: 39879987 Phenotypes for gene: HECTD1 were set to Neurodevelopmental disorder MONDO:0700092 Review for gene: HECTD1 was set to GREEN Added comment: 14 unrelated individuals (identified through GeneMatcher) with 15 variants of uncertain significance (VUS) in HECTD1 (10 missense, 3 frameshift, 1 nonsense, and 1 splicing variant). Of the 15 different variants in HECTD1, 10 occurred de novo, 3 had unknown inheritance, and 2 were compound heterozygous. All variants were absent in gnomAD, and HECTD1 is highly intolerant to loss-of-function variation (loss-of-function-intolerant score of 1). Clinical presentation was variable developmental delay, intellectual disability, autism spectrum disorder, ADHD, and epilepsy. The one individual with compound heterozygous variants had growth impairment along with NDD. The variants were inherited from apparently healthy parents, suggesting that genetic or environmental modifiers may be required to develop the phenotype. Significant enrichment of de novo variants in HECTD1 was also shown in an independent cohort of 53,305 published trios with NDDs or congenital heart disease. HECT-domain-containing protein 1 (HECTD1) mediates developmental pathways, including cell signalling, gene expression, and embryogenesis. Conditional knockout of Hectd1 in the neural lineage in mice resulted in microcephaly, severe hippocampal malformations, and complete agenesis of the corpus callosum, supporting a role for Hectd1 in embryonic brain development. Functional studies of 2 missense variants and 1 nonsense variant in C. elegans revealed dominant effects, including either change-of-function or loss-of-function/haploinsufficient mechanisms. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.2263 | TAOK2 | Zornitza Stark Phenotypes for gene: TAOK2 were changed from Generalized verrucosis; abnormal T cell activation; autism to neurodevelopmental disorder, MONDO:0700092, TAOK2-related; Generalized verrucosis; abnormal T cell activation; autism | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.2238 | RBFOX2 |
Jonathon Bradshaw changed review comment from: - PMID: 26785492: Analysed CHD (1213 congenital heart disease trios) and control (autism spectrum disorder) trios for de novo mutations. Found RBFOX2 gene had significantly more damaging de novo variants than expected: 3 de novo LoF variants (1x nonsense, 1x frameshift, 1x canonical splice variants). All 3 probands have hypoplastic left heart syndrome (HLHS) and no extra-cardiac features. Same cohort later included in PMID: 32368696, listed one additional de novo variant in this gene (missense variant) in a patient with conotruncal defects (CTDs). - PMID: 28991257: Same research consortium as above, an additional splice variant observed in a singleton from the CHD cohort identified as a LoF predicted heterozygous mutation. - PMID: 27670201: RNA expression study showed the silenced allele harbours a nonsense RBFOX2 variant (Arg287*), CHD patient heart tissue sample, same patient published in PMID: 26785492. - PMID: 27485310: Functional studies using heart tissue sample from HLHS patient with NM_001031695.2:c.859C>T p.(Arg287*) showed subcellular mislocalisation, impacting its nuclear function in RNA splicing. - PMID: 25205790: De novo 111.3kb del chr22:36038076-36149338 (hg19) which includes APOL5,APOL6,RBFOX2, in a patient with HLHS. - PMID: 35137168: Rbfox2 conditional knockout mouse model recapitulated several molecular and phenotypic features of HLHS. - 2x NMD-predicted de novo individuals with cardiac defects have been observed (internal data). - ClinVar: one current pathogenic entry: c.523dup (p.Ser175fs). This patient had a complex congenital cardiac defect, choreiform movement disorder, developmental delay, a clotting disorder, intermittent cyanosis, chronic lung disease, low muscle tone, short stature and failure to gain weight, mild dysmorphisms, and mild joint laxity. Brain MRI shows a stable chronic infarction, stable cerebral volume loss, and ex-vacuo prominence of ventricles (personal communication). - ClinGen has curated this gene. Strong association and evidence supporting LoF as a mechanism of disease.; to: - PMID: 26785492: Analysed CHD (1213 congenital heart disease trios) and control (autism spectrum disorder) trios for de novo mutations. Found RBFOX2 gene had significantly more damaging de novo variants than expected: 3 de novo LoF variants (1x nonsense, 1x frameshift, 1x canonical splice variants). All 3 probands have hypoplastic left heart syndrome (HLHS) and no extra-cardiac features. Same cohort later included in PMID: 32368696, listed one additional de novo variant in this gene (missense variant) in a patient with conotruncal defects (CTDs). - PMID: 28991257: Same research consortium as above, an additional splice variant observed in a singleton from the CHD cohort identified as a LoF predicted heterozygous mutation. - PMID: 27670201: RNA expression study showed the silenced allele harbours a nonsense RBFOX2 variant (Arg287*), CHD patient heart tissue sample, same patient published in PMID: 26785492. - PMID: 27485310: Functional studies using heart tissue sample from HLHS patient with NM_001031695.2:c.859C>T p.(Arg287*) showed subcellular mislocalisation, impacting its nuclear function in RNA splicing. - PMID: 25205790: De novo 111.3kb del chr22:36038076-36149338 (hg19) which includes APOL5,APOL6,RBFOX2, in a patient with HLHS. - PMID: 35137168: Rbfox2 conditional knockout mouse model recapitulated several molecular and phenotypic features of HLHS. - 2x NMD-predicted de novo individuals with cardiac defects have been observed (internal data). - ClinVar: one current pathogenic entry: c.523dup (p.Ser175fs). This patient had a complex congenital cardiac defect, choreiform movement disorder, developmental delay, a clotting disorder, intermittent cyanosis, chronic lung disease, low muscle tone, short stature and failure to gain weight, mild dysmorphisms, and mild joint laxity. Brain MRI shows a stable chronic infarction, stable cerebral volume loss, and ex-vacuo prominence of ventricles (personal communication). - ClinGen has curated this gene. Strong association and evidence supporting LoF as a mechanism of disease. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.2131 | TNFSF9 |
Zornitza Stark gene: TNFSF9 was added gene: TNFSF9 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: TNFSF9 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: TNFSF9 were set to 35657354 Phenotypes for gene: TNFSF9 were set to Hereditary susceptibility to infections, MONDO:0015979, TNFSF9-related Review for gene: TNFSF9 was set to RED Added comment: Fournier et al. described one patient with DiGeorge syndrome with a unique susceptibility to EBV with broad EBV infection and smooth muscle tumors. He was found to have a homozygous missense variant (p.V140G) in TNFSF9 coding for CD137L/4-1BBL, the ligand of the T cell co-stimulatory molecule CD137/4-1BB, whose deficiency predisposes to EBV infection. They show that CD137LV140G mutant was weakly expressed on patient cells or when ectopically expressed in HEK and P815 cells. Importantly, patient EBV-infected B cells failed to trigger the expansion of EBV-specific T cells, resulting in decreased T cell effector responses. T cell expansion was recovered when CD137L expression was restored on B cells. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.2119 | ATG9A |
Bryony Thompson gene: ATG9A was added gene: ATG9A was added to Mendeliome. Sources: Literature Mode of inheritance for gene: ATG9A was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: ATG9A were set to 35838483 Phenotypes for gene: ATG9A were set to Autophagy-associated immune dysregulation and hyperplasia Review for gene: ATG9A was set to RED Added comment: A single case with compound heterozygous variants was reported. After infection with Epstein-Barr virus (EBV), the patient developed hyperplastic proliferation of T and B cells in the lung and brain and exhibited defects in lymphocyte memory cell populations. In vitro functional assays. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.2089 | IRAK2 |
Chirag Patel changed review comment from: 2 individuals with sequential or repeated invasive infections with 2 different variants in IRAK2 gene found on WES testing. The IRAK kinases function as downstream signal transductors following the activation of pathogen recognition receptors. IRAK4 gene has been associated with susceptibility to severe infections by common pyogenic bacteria. Individual 1 had herpes simplex virus-triggered hemophagocytic lymphohistiocytosis with tuberculosis, and a homozygous missense variant (L78P). There are no homozygous individuals in gnomAD (MAF 0.003%). No segregation testing reported. Individual 2 had Streptococcus pneumoniae bacteremia with candidemia, and a heterozygous missense variant (R506W) which straddles between the kinase and TRAF6-binding CTD of IRAK2. There are 15 heterozygous individuals in gnomAD for this rare variant with no homozygotes (MAF 0.012%). No segregation testing reported. Both patients’ peripheral blood mononuclear cells showed tendencies for TNFα hypo-responsiveness to representative bacterial, fungal and viral ligands, in line with subjects with IRAK defects. Immunoprecipitation platform assay to pull down TRAF6 revealed that possession of L78P or R506W variants led to reduced TRAF6 ubiquitination. The led to TRAF6 accumulation and in turn decreased TNFα production (an inflammatory cytokine to invading pathogens). Paper does not comment on reasons for disease in biallelic and mono-allelic form. Sources: Literature; to: PMID: 39299377 2 individuals with sequential or repeated invasive infections with 2 different variants in IRAK2 gene found on WES testing. The IRAK kinases function as downstream signal transductors following the activation of pathogen recognition receptors. IRAK4 gene has been associated with susceptibility to severe infections by common pyogenic bacteria. Individual 1 had herpes simplex virus-triggered hemophagocytic lymphohistiocytosis with tuberculosis, and a homozygous missense variant (L78P). There are no homozygous individuals in gnomAD (MAF 0.003%). No segregation testing reported. Individual 2 had Streptococcus pneumoniae bacteremia with candidemia, and a heterozygous missense variant (R506W) which straddles between the kinase and TRAF6-binding CTD of IRAK2. There are 15 heterozygous individuals in gnomAD for this rare variant with no homozygotes (MAF 0.012%). No segregation testing reported. Both patients’ peripheral blood mononuclear cells showed tendencies for TNFα hypo-responsiveness to representative bacterial, fungal and viral ligands, in line with subjects with IRAK defects. Immunoprecipitation platform assay to pull down TRAF6 revealed that possession of L78P or R506W variants led to reduced TRAF6 ubiquitination. The led to TRAF6 accumulation and in turn decreased TNFα production (an inflammatory cytokine to invading pathogens). Paper does not comment on reasons for disease in biallelic and mono-allelic form. Preprint paper: 2 individuals with immune dysregulation (1 x systemic lupus erythematosus and 1 x autoinflammatory disease) with same homozgyous exon 2 deletion in IRAK2 gene found on WES testing and confirmed with Sanger sequencing. Unaffected family members in trio were heterozygous for variant. Exon 2 encodes a proportion of the death domain, a critical protein domain for Myddosome assembly. The patients exhibited aberrantly upregulated type I interferon (IFN) response following LPS stimulation, which was further confirmed in bone marrow-derived macrophages (BMDMs) in mice. RNA sequencing analysis indicated that PBMCs from the two patients consistently exhibited defects in activating NFkb signaling in response to LPS or R848 stimulation, as well as impaired activation of the MAPK signaling pathway. RNA sequencing demonstrated that BMDMs from Irak2 ∆ex2/∆ex2 mice exhibited defects in NFkb and MAPK signaling pathways, similar to patients’ PBMCs. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.2089 | IRAK2 |
Chirag Patel gene: IRAK2 was added gene: IRAK2 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: IRAK2 was set to BOTH monoallelic and biallelic, autosomal or pseudoautosomal Publications for gene: IRAK2 were set to PMID: 39299377 Phenotypes for gene: IRAK2 were set to Immunodeficiency, no OMIM # Review for gene: IRAK2 was set to RED Added comment: 2 individuals with sequential or repeated invasive infections with 2 different variants in IRAK2 gene found on WES testing. The IRAK kinases function as downstream signal transductors following the activation of pathogen recognition receptors. IRAK4 gene has been associated with susceptibility to severe infections by common pyogenic bacteria. Individual 1 had herpes simplex virus-triggered hemophagocytic lymphohistiocytosis with tuberculosis, and a homozygous missense variant (L78P). There are no homozygous individuals in gnomAD (MAF 0.003%). No segregation testing reported. Individual 2 had Streptococcus pneumoniae bacteremia with candidemia, and a heterozygous missense variant (R506W) which straddles between the kinase and TRAF6-binding CTD of IRAK2. There are 15 heterozygous individuals in gnomAD for this rare variant with no homozygotes (MAF 0.012%). No segregation testing reported. Both patients’ peripheral blood mononuclear cells showed tendencies for TNFα hypo-responsiveness to representative bacterial, fungal and viral ligands, in line with subjects with IRAK defects. Immunoprecipitation platform assay to pull down TRAF6 revealed that possession of L78P or R506W variants led to reduced TRAF6 ubiquitination. The led to TRAF6 accumulation and in turn decreased TNFα production (an inflammatory cytokine to invading pathogens). Paper does not comment on reasons for disease in biallelic and mono-allelic form. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.2087 | MARK2 |
Chirag Patel gene: MARK2 was added gene: MARK2 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: MARK2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: MARK2 were set to PMID: 39419027, 39436150 Phenotypes for gene: MARK2 were set to Neurodevelopmental disorder MONDO:0700092 Mode of pathogenicity for gene: MARK2 was set to Loss-of-function variants (as defined in pop up message) DO NOT cause this phenotype - please provide details in the comments Review for gene: MARK2 was set to GREEN Added comment: 31 individuals with autism spectrum disorder (30/31), intellectual disability/developmental delay (100%), motor delay (62%), speech-language problems (100%), seizure/epilepsy (46%), behaviour disorders (ADHD, aggression, anxiety)(74%), and distinctive facial features (narrow face, abnormal or broad forehead, downslanting palpebral fissures, and large or dysplastic ears). WES/WGS identified 25 LOF and 6 missense variants in MARK2 gene (Microtubule affinity-regulating kinase 2) which contributes to establishing neuronal polarity and developing dendritic spines. LOF variants were de novo (16/25), inherited (4/25), or unk (5/25). All 6 missense variants were de novo and clustered in the kinase or KA1 domains. The mRNA and protein expression of MARK2 in PBMCs were significantly lower in affected individuals with LOF variants than in the control group. In vitro expression assay of missense variants supported the effect of MARK2 loss. Proband-derived and CRISPR-engineered isogenic induced pluripotent stem cells (iPSCs) showed MARK2 loss leads to early neuronal developmental and functional deficits, including anomalous polarity and disorganization in neural rosettes, as well as imbalanced proliferation and differentiation in neural progenitor cells (NPCs). Mark2+/- mice showed abnormal cortical formation and partition and ASD-like behaviour. Through the use of RNA sequencing (RNA-seq) and lithium treatment, they linked MARK2 loss to downregulation of the WNT/β-catenin signaling pathway and identified lithium as a potential drug for treating MARK2-associated ASD. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.2078 | LINC01578 |
Zornitza Stark gene: LINC01578 was added gene: LINC01578 was added to Mendeliome. Sources: Literature SV/CNV, new gene name tags were added to gene: LINC01578. Mode of inheritance for gene: LINC01578 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Phenotypes for gene: LINC01578 were set to Neurodevelopmental disorder, MONDO:0700092, CHASERR-related Review for gene: LINC01578 was set to GREEN Added comment: CHASERR encodes a human long noncoding RNA (lncRNA) adjacent to CHD2, a coding gene in which de novo loss-of-function variants cause developmental and epileptic encephalopathy. Three unrelated children reported with a syndromic, early-onset neurodevelopmental disorder, each of whom had a de novo deletion in the CHASERR locus. The children had severe encephalopathy, shared facial dysmorphisms, cortical atrophy, and cerebral hypomyelination - a phenotype that is distinct from the phenotypes of patients with CHD2 haploinsufficiency. CHASERR deletion results in increased CHD2 protein abundance in patient-derived cell lines and increased expression of the CHD2 transcript in cis, indicating bidirectional dosage sensitivity in human disease. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.2050 | RELB | Chirag Patel reviewed gene: RELB: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 39231201; Phenotypes: T-cell and B cell immunodeficiency, Immunodeficiency 53, OMIM #617585; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.2046 | IL7 |
Zornitza Stark gene: IL7 was added gene: IL7 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: IL7 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: IL7 were set to 39352394 Phenotypes for gene: IL7 were set to Combined immunodeficiency, MONDO:0015131, IL7-related Review for gene: IL7 was set to GREEN Added comment: 6 indviduals from 4 kindreds with combined immune deficiency and recurrent infections. Extensive immunophenotyping revealing IL7 dependent and independent development of T cells. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.2034 | IL7R | Ain Roesley Phenotypes for gene: IL7R were changed from Severe combined immunodeficiency, T-cell negative, B-cell/natural killer cell-positive type MIM# 608971; fever; rash; failure to thrive; recurrent respiratory and gastric infections; diarrhoea; lymphadenopathy; pneumonitis; Pancytopaenia; low T-cell numbers; decreased immunoglobulins; normal-high B/NK-cell numbers. to severe combined immunodeficiency 104 MIM#608971 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.2022 | PSKH1 |
Zornitza Stark gene: PSKH1 was added gene: PSKH1 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: PSKH1 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: PSKH1 were set to 39132680 Phenotypes for gene: PSKH1 were set to Cholestasis, progressive familial intrahepatic, 13, MIM# 620962 Review for gene: PSKH1 was set to GREEN Added comment: 4 consanguineous families (out of 279 families) with intrahepatic cholestasis: -1 patient died at 10mths with cholestasis/liver impairment and kidney impairment -3 cousins with cholestasis (2 with liver failure needing transplant) and kidney features (2 with kidney failure, 1 with renal echogenicity) -2 siblings with hepatic fibrosis (1 with unilateral renal agenesis) -2 siblings with unexplained liver cirrhosis (1 needing transplant) but normal kidney function WES identified 3 different homozygous variants in PSKH1 (Arg121Trp, Ile126Val, Arg183Cys). Patient fibroblasts displayed abnormal cilia that are long and show abnormal transport. A homozygous Pskh1 mutant mouse faithfully recapitulated the human phenotype and displayed abnormally long cilia. The phenotype could be rationalized by the loss of catalytic activity observed for each recombinant PSKH1 variant using in vitro kinase assays. Human PSKH1 is a poorly understood gene that may play important role in intracellular trafficking, is sensitive to intracellular Ca2+ concentration, and is localized to centrosomes, suggesting a link to cystogenesis. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1998 | CEP76 |
Mark Cleghorn gene: CEP76 was added gene: CEP76 was added to Mendeliome. Sources: Other Mode of inheritance for gene: CEP76 was set to BIALLELIC, autosomal or pseudoautosomal Phenotypes for gene: CEP76 were set to complex neurodevelopmental disorder MONDO:0100038; Joubert syndrome; Bardet-Biedl syndrome; retinitis pigmentosa Penetrance for gene: CEP76 were set to unknown Review for gene: CEP76 was set to GREEN Added comment: Erica Davis, Stanley Manne Children’s research institute, Chicago ESHG presentation 4/6/24, unpublished CEP76 associated with syndromic ciliopathy CEP76 localizes to centrioles and basal body primary cilia Role in normal centriolar duplication Index case Bardet Biedl syndrome Compound heterozygous pLoF variants in CEP76 Via Gene matcher 7 cases in 7 families- biallelic CEP76 and various clinical features within ciliopathy spectrum: Obesity Ocular phenotype Structural brain anomalies Renal? 3/7 families clinical Dx Joubert syndrome 1/7 BBS 1/7 GDD/ID NOS 2/7 retinitis pigmentosa (1 of these with learning difficulties) Mixture of biallelic pLOF and missense variant CEP76 knockout zebrafish model shows retinal phenotype w photoreceptor loss, similar to homozygous known BBS4 pathogenic variant Cell based fx studies with missense variants above, consistent with centriolar duplication dysfunction Sources: Other |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1998 | EIF3I |
Mark Cleghorn gene: EIF3I was added gene: EIF3I was added to Mendeliome. Sources: Other Mode of inheritance for gene: EIF3I was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Phenotypes for gene: EIF3I were set to complex neurodevelopmental disorder MONDO:0100038 Penetrance for gene: EIF3I were set to unknown Review for gene: EIF3I was set to AMBER Added comment: Marcello Scala, Genoa ESHG presentation 4/6/24, unpublished De novo EIF3I missense variants as a cause for novel NDD syndrome EIF3 complex involved in regulating initiation of mRNA translation Negative regulator of the TGF beta pathway 8 individuals from 8 families Mod/severe GDD or ID Short stature Midline brain anomalies (hypoplasia/agenesis of corpus callosum and pituitary hypoplasia) Frontal bossing, hypertelorism, long philtrum All w rare de novo missense variants in EIF3I, clustering within highly conserved WD repeats Functional studies Transfected HEK293 cell studies suggested EIF3I protein from variant alleles (from patients above) had disrupted interaction with other EIF subunits, and cells had reduced protein synthesis overall No animal models Sources: Other |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1998 | MRPL42 |
Mark Cleghorn gene: MRPL42 was added gene: MRPL42 was added to Mendeliome. Sources: Other Mode of inheritance for gene: MRPL42 was set to BIALLELIC, autosomal or pseudoautosomal Phenotypes for gene: MRPL42 were set to complex neurodevelopmental disorder MONDO:0100038 Penetrance for gene: MRPL42 were set to unknown Review for gene: MRPL42 was set to RED Added comment: Bjorn Fischer-Zirnsak, Charite Berlin ESHG presentation 4/6/24, unpublished ++ supportive functional data (on patient-derived cells) presented, but only 1 case Biallelic MRPL42 LoF with lethal mitochondrial disease Index case, born to consanguineous parents Small Hypotonia Seizures Conductive hearing impairment CV: hypertrophic RV, small VSD Hepatomegaly Lactic acidosis Homozygous MRPL42: c.219+6T>A (spliceAI 0.83 donor loss) RNASeq and RT-PCR supportive of aberrant splicing resulting in out of frame exon 4 skipping Sources: Other |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1998 | MED16 |
Mark Cleghorn gene: MED16 was added gene: MED16 was added to Mendeliome. Sources: Other Mode of inheritance for gene: MED16 was set to BIALLELIC, autosomal or pseudoautosomal Phenotypes for gene: MED16 were set to complex neurodevelopmental disorder MONDO:0100038 Review for gene: MED16 was set to GREEN Added comment: Charlotte Guillouet, Imagine institute Paris ESHG presentation 4/6/24, unpublished MED16 is part of tail of ‘mediator complex’ Plays a role in enhancer/promotor regions Disruptive variants in other genes encoding proteins within this mediator complex (MED11/12/12/17/20, CDK8) are assoc w neurodevelopmental/neurodegenerative disorders Cases index family Sibs (M/F) to consanguineous parents w NDD/mod ID, tetralogy of Fallot or VSD, bilat deafness, micrognathia, malar hypoplasia, dental AbN, pre auricular tags, hypoplastic nails, brachydactly WES: biallelic MED16 p.Asp217Asn Via genematcher 16 families total, 22 individuals, homozygous or compound het rare MED16 variants Mixture of pLoF and missense variants Motor delay in 16/17 DD or ID in 17/17 Speech delay in 15/15 6/19 ToF 7/19 other septal/aortic defects 6/18 deafness 11/18 microretrognathia 6/17 cleft palate 8/19 preauricular tags 9/20 puffy eyelids 12/20 nasal dysplasia (most commonly short columella w bulbous nasal tip) 7/20 corpus callosum anomalies Not clear that functional work recapitulated phenotype as yet? Immunofluroescence on HeLa cells transfected with variants observed ?conclusion MED16 knockout mouse > growth delay, pre weaning lethality MED16 knockout zebrafish > reduced body length, early death, no obvious craniofacial phenotype Sources: Other |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1998 | FKBP4 |
Mark Cleghorn gene: FKBP4 was added gene: FKBP4 was added to Mendeliome. Sources: Other Mode of inheritance for gene: FKBP4 was set to BIALLELIC, autosomal or pseudoautosomal Phenotypes for gene: FKBP4 were set to complex neurodevelopmental disorder MONDO:0100038 Penetrance for gene: FKBP4 were set to unknown Review for gene: FKBP4 was set to AMBER Added comment: Rebecca Yarwood, University of Manchester ESHG presentation 4/6/24, unpublished Bilalleic FKBP4 w NDD + DSD Protein has functions in hormone receptor trafficking FKPB4 highly expressed in stem cell and progenitor cells in gonad and neuronal degeneration Index case Severe GDD abN external genitalia CV AbN FBBP4 p.E196* Via GeneMatcher 7 families (12 individuals) 12/12 severe GDD/ID 9/10 microcephaly 11/12 external genital abnormalities (details not provided) All w homozygous pLoF variants (mixture of canonical splice, frameshift, nonsense) Sources: Other |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1992 | RFC4 |
Chirag Patel gene: RFC4 was added gene: RFC4 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: RFC4 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: RFC4 were set to PMID: 39106866 Phenotypes for gene: RFC4 were set to RFC4-related multisystem disorder Review for gene: RFC4 was set to GREEN gene: RFC4 was marked as current diagnostic Added comment: 9 affected individuals (aged birth to 47yrs) from 8 unrelated families with a multisystem disorder. Clinical features included: muscle weakness/myopathy (9/9), motor incoordination/gait disturbance (8/8), delayed gross motor development (6/9), dysarthria (5/5), peripheral neuropathy (3/3 adults), bilateral sensorineural hearing impairment (6/9), decreased body weight (8/9), short stature (5/9), microcephaly (4/9), respiratory issues/insufficiency (6/9), cerebellar atrophy (4/9), pituitary hypoplasia (3/9). WES or WGS identified biallelic loss-of-function variants in RFC4 (3 frameshift, 2 splice site, 1 single AA duplication, 2 single AA deletions, 2 missense), and almost all are likely to disrupt the C-terminal domain indispensable for Replication factor C (RFC) complex formation. All variants segregated with the disease. The RFC complex (with 5 subunits) is central to process of regulation of DNA replication, and it loads proliferating cell nuclear antigen onto DNA to facilitate the recruitment of replication and repair proteins and enhance DNA polymerase processivity. RFC1 is associated with CANVAS but the contributions of RFC2-5 subunits on human Mendelian disorders is unknown. Analysis of a previously determined cryo-EM structure of RFC bound to proliferating cell nuclear antigen suggested that the variants disrupt interactions within RFC4 and/or destabilize the RFC complex. Cellular studies using RFC4-deficient HeLa cells and primary fibroblasts demonstrated decreased RFC4 protein, compromised stability of the other RFC complex subunits, and perturbed RFC complex formation. Additionally, functional studies of the RFC4 variants affirmed diminished RFC complex formation, and cell cycle studies suggested perturbation of DNA replication and cell cycle progression. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1983 | SPARCL1 |
Zornitza Stark gene: SPARCL1 was added gene: SPARCL1 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: SPARCL1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: SPARCL1 were set to 39169229 Phenotypes for gene: SPARCL1 were set to Corneal dystrophy, MONDO:0018102 Review for gene: SPARCL1 was set to RED Added comment: 8 affected individuals with corneal dystrophy from 1 family (3 generations). Affected individuals had diffuse central stromal opacity, with reduced visual acuity in older family members. Histopathology of affected cornea tissue revealed mild stromal textural alterations with alcianophilic deposits. WGS from 4 affected individuals in family identified a novel heterozygous missense variant in exon 4 of SPARCL1 (c.334G > A; p.(Glu112Lys)) which segregated with disease. SPARC-like protein 1 (SPARCL1) is a secreted matricellular protein involved in cell migration, cell adhesion, tissue repair, and remodelling. SPARCL1 has been shown to regulate decorin. Heterozygous variants in DCN, encoding decorin, cause autosomal dominant congenital stromal corneal dystrophy, suggesting a common pathogenic pathway. Immunohistochemistry showed the level of decorin was significantly decreased in the corneal stroma of the affected tissue, and SPARCL1 appeared to be retained in the epithelium. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1980 | PNPLA8 |
Chirag Patel edited their review of gene: PNPLA8: Added comment: Cohort analysis of clinical features of new and previously reported individuals with biallelic PNPLA8 variants (25 affected individuals across 20 families). They showed that PNPLA8-related neurological diseases manifest as a continuum ranging from variable developmental and/or degenerative epileptic-dyskinetic encephalopathy to childhood-onset neurodegeneration. Complete loss of PNPLA8 was associated with the more profound end of the spectrum. Using cerebral organoids generated from human induced pluripotent stem cells, they found that loss of PNPLA8 led to developmental defects by reducing the number of basal radial glial cells and upper-layer neurons. Neural progenitor cells lacking PNPLA8 showed a reduced amount of lysophosphatidic acid, lysophosphatidylethanolamine and phosphatidic acid. They show that PNPLA8 is crucial to meet phospholipid synthetic needs and to produce abundant basal radial glial cells in human brain development.; Set current diagnostic: yes |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1976 | SF3B1 |
Mark Cleghorn gene: SF3B1 was added gene: SF3B1 was added to Mendeliome. Sources: Other Mode of inheritance for gene: SF3B1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Phenotypes for gene: SF3B1 were set to complex neurodevelopmental disorder MONDO:0100038 Penetrance for gene: SF3B1 were set to unknown Review for gene: SF3B1 was set to AMBER Added comment: SF3B1 Delphine Bernard, University of Brest ESHG talk 2/6/24, unpublished De novo germline SF3B1 variants, proposed spliceosomopathy/NDD gene SF3B1 is an RNA binding protein that stabilizes the U2 snRNP complex at branchpoint sequences Somatic SF3B1 missense commonly occur in haematological malignancy (K700E recurrent) 25 patients with syndromic NDD + de novo heterozygous rare SF3B1 variants identified on WES, genematcher 13 missense (incl recurrent xxx and xxx) within HEAT domain 5 nonsense 4 splicing 1 frameshift Patients w missense variants may have more severe phenotype incl mircocepahly, palate anomalies, cerebral anomalies, GI/cardiac anomalies Cellular models of missense variants: erythroleukaemia K562, HEK293T Suggest missense variants do not cause loss of function, but increase exon skipping and alternative 3’ splice site use Sources: Other |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1976 | C12orf66 |
Mark Cleghorn gene: C12orf66 was added gene: C12orf66 was added to Mendeliome. Sources: Other Mode of inheritance for gene: C12orf66 was set to BIALLELIC, autosomal or pseudoautosomal Phenotypes for gene: C12orf66 were set to complex neurodevelopmental disorder MONDO:0100038 Penetrance for gene: C12orf66 were set to unknown Review for gene: C12orf66 was set to AMBER Added comment: KICS2 (previously known as C12ORF66) Rebecca Buchert, Universitatklinikum Tubingen ESHG talk 2/6/24, unpublished Proposed ID + epilepsy gene 8 families w 11 affected individuals Phenotypes: 11/11 ID, 9/11 epilepsy, 3/11 hearing impairment 3/8 homozygous missense variants (p.Asp296Glu, p.Tyr393Cys, p.Tyr393Cys), all highly conserved 1/8 compound het PTC (p.Lys262*) with 1.1Mb deletion 4/8 homozygous PTC (p.Glu3*, p.Gly79Valfs*18, p.Gly79Valfs*18, p.Lys260Asnfs*18) Gene appears to be involved in mTOR pathway, and cilia function mTORC1 activity in CRISPR-HEK293T cells – reduced activity in cells w variants above Zebrafish model: otolith defects, ciliary dysfunction ?not clear that this truly mimics phenotype observed in patient cohort described Sources: Other |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1973 | REPS2 |
Mark Cleghorn gene: REPS2 was added gene: REPS2 was added to Mendeliome. Sources: Other Mode of inheritance for gene: REPS2 was set to X-LINKED: hemizygous mutation in males, biallelic mutations in females Phenotypes for gene: REPS2 were set to complex neurodevelopmental disorder MONDO:0100038; Cerebral palsy HP:0100021 Penetrance for gene: REPS2 were set to unknown Review for gene: REPS2 was set to AMBER Added comment: REPS2 Hao Hu, Guangzhou Women and Children’s MC ESHG talk 1/6/24, unpublished Proposed X-linked cerebral palsy + NDD gene 4 unrelated males with predicted deleterious hemizygous REPS2 variants, 2 PTC, 2 missense. 2 de novo, 2 maternally inherited Phenotypes: 2 w CP + moderate ID/ASD, 2 w NDD NOS Variants described: c.1050_1052delGAA;p.K351del c.1040T>C; p.I347T c.962C>G; p.S321C c.1736delA; p.N579Tfs*17 In vitro assay of above 4 variants suggest reduced REPS2 protein stability Zebrafish model: REPS2 expressed in neuronal cells, REPS2 knock down have reduced motor activity and abN neuronal morphology Mouse model hemizygous w one of above variants (not specified): reduced performance in cognitive tasks, abnormal neuronal migration pattern on post mortem examination Mechanism may relate to dopamine signalling? Sources: Other |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1948 | CSMD1 |
Krithika Murali gene: CSMD1 was added gene: CSMD1 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: CSMD1 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: CSMD1 were set to PMID:38816421 Phenotypes for gene: CSMD1 were set to complex neurodevelopmental disorder MONDO:0100038 Review for gene: CSMD1 was set to GREEN Added comment: PMID 38816421 Werren et al 2024 report 8 individuals from 6 families identified through exome sequencing and subsequent gene-sharing efforts with biallelic missense CSMD1 variants. Shared phenotypic features included: GDD, ID, microcephaly and polymicrogyria. Other features included dysmorphism, IUGR, hypotonia, arthrogryposis, seizures, opthalmological anomalies and other brain white matter anomalies Heterozygous parents were unaffected. Loss of function is the postulated mechanism based on experimental data involving early-stage forebrain organoids differentiated from CSMD1 knockout human embryonic stem cells (hESCs). ClinGen haploinsufficiency score of 1, however, this curation was last reviewed in 2018. This gene is within the scope of review for the ClinGen Autisim and ID GCEP. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1922 | OAS2 |
Zornitza Stark gene: OAS2 was added gene: OAS2 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: OAS2 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: OAS2 were set to 36538032 Phenotypes for gene: OAS2 were set to Multisystem inflammatory syndrome, MONDO:0035375, OAS2-related Review for gene: OAS2 was set to GREEN Added comment: 3x unrelated patients with MIS-C after COVID infection. Patients displayed excessive inflammatory responses to intracellular dsRNA, SARS-CoV-2, SARS-CoV-2–infected cells, and their RNA, providing a plausible mechanism for MIS-C. Similar presentation to OAS1 and RNASEL. Functional data. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1906 | KCNJ10 | Zornitza Stark edited their review of gene: KCNJ10: Added comment: PMID 38979912: 11 individuals from 8 unrelated families reported with variants in this gene and paroxysmal dyskinesia. Notably one was the parent of a child with recessive SeSAME syndrome (established gene-disease association). Patch-clamp recordings in HEK293T cells revealed apparent reductions in K+ currents of the patient-derived variants, indicating a loss-of-function. In Drosophila, milder hyperexcitability phenotypes were observed in heterozygous Irk2 knock-in flies compared to homozygotes, supporting haploinsufficiency as the mechanism for the detected heterozygous variants. Electrophysiological recordings showed that excitatory neurons in Irk2 haploinsufficiency flies exhibited increased excitability, and glia-specific complementation with human Kir4.1 rescued the Irk2 mutant phenotypes.; Changed publications: 19289823, 19420365, 21849804, 11466414, 38979912; Changed phenotypes: SESAME syndrome, MIM# 612780, Paroxysmal dyskinesia, MONDO:0015427, KCNJ10-related; Changed mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1903 | HBS1L |
Bryony Thompson gene: HBS1L was added gene: HBS1L was added to Mendeliome. Sources: Literature Mode of inheritance for gene: HBS1L was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: HBS1L were set to 38966981; 24288412; 30707697 Phenotypes for gene: HBS1L were set to Retinal disorder MONDO:0005283 Review for gene: HBS1L was set to AMBER Added comment: A single case with biallelic variants reported with retinal dystrophy, poor growth and neurodevelopmental delay (originally reported in 2013). A hypomorph mouse model demonstrated defective development of photoreceptor cells. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1899 | NDC1 |
Bryony Thompson gene: NDC1 was added gene: NDC1 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: NDC1 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: NDC1 were set to 39003500; 19782045 Phenotypes for gene: NDC1 were set to triple-A syndrome MONDO:0009279 Review for gene: NDC1 was set to GREEN Added comment: 7 cases from 4 consanguineous families (3 different variants: 1 intronic variants that causes in-frame RNA splice impact, 2 missense) with a Triple-A-like syndrome (including ID and neuropathy). Supporting cellular localisation studies were conducted in patient cell lines with the splice variant. NDC1 is required to anchor ALADIN (encoded by AAAS, the gene that causes Triple-A syndrome) in the nuclear pore complex. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1840 | PRRX1 |
Melanie Marty changed review comment from: > 17 individuals with Craniosynostosis from 14 families had been found to have rare heterozygous variants in PRRX1, loss of function variants (PTCs, start loss and partial/full gene del) or missense variants affecting the homeodomain. > These consisted of three de novo variants, but for the majority of cases the variant was inherited from an unaffected parent, yielding an estimate for the penetrance of craniosynostosis of 12.5%. > These results were also supported by immunofluorescence analyses which showed that missense variants within the PRRX1 homeodomain cause abnormal nuclear localisation (PMID: 37154149) > Authors discuss how the previous reports of agnathia-otocephaly doesn't fit with this new evidence and they showed that a missense variant previously reported in a patient with agnathia-otocephaly p.(Phe113Leu) did not affect nuclear import. Supporting evidence: > Post-natal calvarial stem cells expressing Prrx1 have been shown to reside exclusively in the calvarial suture niche, suggesting a requirement for PRRX1 regarding suture patency during early development (PMID: 28366454) >Prrx1 has been shown to be widely expressed within the mouse coronal suture (PMID: 34376651) >Agnathia-otocephaly complex, 2 x missense variants (1 x het, 1 x hom) and 2 x frameshifts reported (het). The frameshift variants both occur in a poly A tract (PMID: 21294718, PMID: 22674740, PMID: 23444262, PMID: 22211708). Authors of the more recent publication on Craniosynostosis (PMID: 37154149) cast some doubt on the reports for Agnathia-otocephaly, possible explanations discussed are that this condition is AR and a 2nd hit was missed or another cause was not identified such as variants in OTX2. > PMID: 7758948 generated a loss-of-function mutation in the mouse Pmx1 gene. Mice homozygous for the mutant allele died soon after birth and exhibited defects of skeletogenesis, which involved the loss or malformation of craniofacial, limb, and vertebral skeletal structures. ; to: Craniosynostosis (MONDO:0015469), PRRX1-related > 17 individuals with Craniosynostosis from 14 families had been found to have rare heterozygous variants in PRRX1, loss of function variants (PTCs, start loss and partial/full gene del) or missense variants affecting the homeodomain. > These consisted of three de novo variants, but for the majority of cases the variant was inherited from an unaffected parent, yielding an estimate for the penetrance of craniosynostosis of 12.5%. > These results were also supported by immunofluorescence analyses which showed that missense variants within the PRRX1 homeodomain cause abnormal nuclear localisation (PMID: 37154149) > Authors discuss how the previous reports of agnathia-otocephaly doesn't fit with this new evidence and they showed that a missense variant previously reported in a patient with agnathia-otocephaly p.(Phe113Leu) did not affect nuclear import. Supporting evidence: > Post-natal calvarial stem cells expressing Prrx1 have been shown to reside exclusively in the calvarial suture niche, suggesting a requirement for PRRX1 regarding suture patency during early development (PMID: 28366454) >Prrx1 has been shown to be widely expressed within the mouse coronal suture (PMID: 34376651) Agnathia-otocephaly complex, MIM# 202650 >Agnathia-otocephaly complex, 2 x missense variants (1 x het, 1 x hom) and 2 x frameshifts reported (het). The frameshift variants both occur in a poly A tract (PMID: 21294718, PMID: 22674740, PMID: 23444262, PMID: 22211708). Authors of the more recent publication on Craniosynostosis (PMID: 37154149) cast some doubt on the reports for Agnathia-otocephaly, possible explanations discussed are that this condition is AR and a 2nd hit was missed or another cause was not identified such as variants in OTX2. > PMID: 7758948 generated a loss-of-function mutation in the mouse Pmx1 gene. Mice homozygous for the mutant allele died soon after birth and exhibited defects of skeletogenesis, which involved the loss or malformation of craniofacial, limb, and vertebral skeletal structures. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1840 | PRRX1 |
Melanie Marty changed review comment from: > 17 individuals with Craniosynostosis from 14 families had been found to have rare heterozygous variants in PRRX1, loss of function variants (PTCs, start loss and partial/full gene del) or missense variants affecting the homeodomain. > These consisted of three de novo variants, but for the majority of cases the variant was inherited from an unaffected parent, yielding an estimate for the penetrance of craniosynostosis of 12.5%. > These results were also supported by immunofluorescence analyses which showed that missense variants within the PRRX1 homeodomain cause abnormal nuclear localisation (PMID: 37154149) > Authors discuss how the previous reports of agnathia-otocephaly doesn't fit with this new evidence and they showed that a missense variant previously reported in a patient with agnathia-otocephaly p.(Phe113Leu) did not affect nuclear import. Supporting evidence: > Post-natal calvarial stem cells expressing Prrx1 have been shown to reside exclusively in the calvarial suture niche, suggesting a requirement for PRRX1 regarding suture patency during early development (PMID: 28366454) >Prrx1 has been shown to be widely expressed within the mouse coronal suture (PMID: 34376651) >Agnathia-otocephaly complex, 2 x missense variants (1 x het, 1 x hom) and 2 x frameshifts reported (het). The frameshift variants both occur in a poly A tract (PMID: 21294718, PMID: 22674740, PMID: 23444262, PMID: 22211708). Authors of the more recent publication on Craniosynostosis (PMID: 37154149) cast some doubt on the reports for Agnathia-otocephaly, possible explanations discussed are that this condition is AR and a 2nd hit was missed or another cause was not identified such as variants in OTX2.; to: > 17 individuals with Craniosynostosis from 14 families had been found to have rare heterozygous variants in PRRX1, loss of function variants (PTCs, start loss and partial/full gene del) or missense variants affecting the homeodomain. > These consisted of three de novo variants, but for the majority of cases the variant was inherited from an unaffected parent, yielding an estimate for the penetrance of craniosynostosis of 12.5%. > These results were also supported by immunofluorescence analyses which showed that missense variants within the PRRX1 homeodomain cause abnormal nuclear localisation (PMID: 37154149) > Authors discuss how the previous reports of agnathia-otocephaly doesn't fit with this new evidence and they showed that a missense variant previously reported in a patient with agnathia-otocephaly p.(Phe113Leu) did not affect nuclear import. Supporting evidence: > Post-natal calvarial stem cells expressing Prrx1 have been shown to reside exclusively in the calvarial suture niche, suggesting a requirement for PRRX1 regarding suture patency during early development (PMID: 28366454) >Prrx1 has been shown to be widely expressed within the mouse coronal suture (PMID: 34376651) >Agnathia-otocephaly complex, 2 x missense variants (1 x het, 1 x hom) and 2 x frameshifts reported (het). The frameshift variants both occur in a poly A tract (PMID: 21294718, PMID: 22674740, PMID: 23444262, PMID: 22211708). Authors of the more recent publication on Craniosynostosis (PMID: 37154149) cast some doubt on the reports for Agnathia-otocephaly, possible explanations discussed are that this condition is AR and a 2nd hit was missed or another cause was not identified such as variants in OTX2. > PMID: 7758948 generated a loss-of-function mutation in the mouse Pmx1 gene. Mice homozygous for the mutant allele died soon after birth and exhibited defects of skeletogenesis, which involved the loss or malformation of craniofacial, limb, and vertebral skeletal structures. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1840 | PRRX1 |
Melanie Marty changed review comment from: > 17 individuals with Craniosynostosis from 14 families had been found to have rare heterozygous variants in PRRX1, loss of function variants (PTCs, start loss and partial/full gene del) or missense variants affecting the homeodomain. > These consisted of three de novo variants, but for the majority of cases the variant was inherited from an unaffected parent, yielding an estimate for the penetrance of craniosynostosis of 12.5%. > These results were also supported by immunofluorescence analyses which showed that missense variants within the PRRX1 homeodomain cause abnormal nuclear localisation (PMID: 37154149) > Authors discuss how the previous reports of agnathia-otocephaly doesn't fit with this new evidence and they showed that a missense variant previously reported in a patient with agnathia-otocephaly p.(Phe113Leu) did not affect nuclear import. Supporting evidence: > Post-natal calvarial stem cells expressing Prrx1 have been shown to reside exclusively in the calvarial suture niche, suggesting a requirement for PRRX1 regarding suture patency during early development (PMID: 28366454) >Prrx1 has been shown to be widely expressed within the mouse coronal suture (PMID: 34376651) >Agnathia-otocephaly complex, 2 x missense variants (1 x het, 1 x hom) and 2 x frameshifts reported (het). The frameshift variants both occur in a poly A tract (PMID: 21294718, PMID: 22674740, PMID: 23444262, PMID: 22211708).; to: > 17 individuals with Craniosynostosis from 14 families had been found to have rare heterozygous variants in PRRX1, loss of function variants (PTCs, start loss and partial/full gene del) or missense variants affecting the homeodomain. > These consisted of three de novo variants, but for the majority of cases the variant was inherited from an unaffected parent, yielding an estimate for the penetrance of craniosynostosis of 12.5%. > These results were also supported by immunofluorescence analyses which showed that missense variants within the PRRX1 homeodomain cause abnormal nuclear localisation (PMID: 37154149) > Authors discuss how the previous reports of agnathia-otocephaly doesn't fit with this new evidence and they showed that a missense variant previously reported in a patient with agnathia-otocephaly p.(Phe113Leu) did not affect nuclear import. Supporting evidence: > Post-natal calvarial stem cells expressing Prrx1 have been shown to reside exclusively in the calvarial suture niche, suggesting a requirement for PRRX1 regarding suture patency during early development (PMID: 28366454) >Prrx1 has been shown to be widely expressed within the mouse coronal suture (PMID: 34376651) >Agnathia-otocephaly complex, 2 x missense variants (1 x het, 1 x hom) and 2 x frameshifts reported (het). The frameshift variants both occur in a poly A tract (PMID: 21294718, PMID: 22674740, PMID: 23444262, PMID: 22211708). Authors of the more recent publication on Craniosynostosis (PMID: 37154149) cast some doubt on the reports for Agnathia-otocephaly, possible explanations discussed are that this condition is AR and a 2nd hit was missed or another cause was not identified such as variants in OTX2. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1840 | PRRX1 |
Melanie Marty changed review comment from: > 17 individuals with Craniosynostosis from 14 families had been found to have rare heterozygous variants in PRRX1, loss of function variants (PTCs, start loss and partial/full gene del) or missense variants affecting the homeodomain. > These consisted of three de novo variants, but for the majority of cases the variant was inherited from an unaffected parent, yielding an estimate for the penetrance of craniosynostosis of 12.5%. > These results were also supported by immunofluorescence analyses which showed that missense variants within the PRRX1 homeodomain cause abnormal nuclear localisation (PMID: 37154149) > Authors discuss how the previous reports of agnathia-otocephaly doen't fit with this new evidence and they showed that a missense variant previously reported in a patient with agnathia-otocephaly p.(Phe113Leu) did not affect nuclear import. Supporting evidence: > Post-natal calvarial stem cells expressing Prrx1 have been shown to reside exclusively in the calvarial suture niche, suggesting a requirement for PRRX1 regarding suture patency during early development (PMID: 28366454) >Prrx1 has been shown to be widely expressed within the mouse coronal suture (PMID: 34376651) >Agnathia-otocephaly complex, 2 x missense variants (1 x het, 1 x hom) and 2 x frameshifts reported (het). The frameshift variants both occur in a poly A tract (PMID: 21294718, PMID: 22674740, PMID: 23444262, PMID: 22211708).; to: > 17 individuals with Craniosynostosis from 14 families had been found to have rare heterozygous variants in PRRX1, loss of function variants (PTCs, start loss and partial/full gene del) or missense variants affecting the homeodomain. > These consisted of three de novo variants, but for the majority of cases the variant was inherited from an unaffected parent, yielding an estimate for the penetrance of craniosynostosis of 12.5%. > These results were also supported by immunofluorescence analyses which showed that missense variants within the PRRX1 homeodomain cause abnormal nuclear localisation (PMID: 37154149) > Authors discuss how the previous reports of agnathia-otocephaly doesn't fit with this new evidence and they showed that a missense variant previously reported in a patient with agnathia-otocephaly p.(Phe113Leu) did not affect nuclear import. Supporting evidence: > Post-natal calvarial stem cells expressing Prrx1 have been shown to reside exclusively in the calvarial suture niche, suggesting a requirement for PRRX1 regarding suture patency during early development (PMID: 28366454) >Prrx1 has been shown to be widely expressed within the mouse coronal suture (PMID: 34376651) >Agnathia-otocephaly complex, 2 x missense variants (1 x het, 1 x hom) and 2 x frameshifts reported (het). The frameshift variants both occur in a poly A tract (PMID: 21294718, PMID: 22674740, PMID: 23444262, PMID: 22211708). |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1840 | PRRX1 |
Melanie Marty changed review comment from: > 17 individuals with Craniosynostosis from 14 families had been found to have rare heterozygous variants in PRRX1, loss of function variants (PTCs, start loss and partial/full gene del) or missense variants affecting the homeodomain. > These consisted of three de novo variants, but for the majority of cases the variant was inherited from an unaffected parent, yielding an estimate for the penetrance of craniosynostosis of 12.5%. > These results were also supported by immunofluorescence analyses which showed that missense variants within the PRRX1 homeodomain cause abnormal nuclear localisation (PMID: 37154149) > Authors discuss how the previous reports of agnathia-otocephaly don't fit with this new evidence and they showed that a missense variant previously reported in a patient with agnathia-otocephaly p.(Phe113Leu) did not affect nuclear import. Supporting evidence: > Post-natal calvarial stem cells expressing Prrx1 have been shown to reside exclusively in the calvarial suture niche, suggesting a requirement for PRRX1 regarding suture patency during early development (PMID: 28366454) >Prrx1 has been shown to be widely expressed within the mouse coronal suture (PMID: 34376651); to: > 17 individuals with Craniosynostosis from 14 families had been found to have rare heterozygous variants in PRRX1, loss of function variants (PTCs, start loss and partial/full gene del) or missense variants affecting the homeodomain. > These consisted of three de novo variants, but for the majority of cases the variant was inherited from an unaffected parent, yielding an estimate for the penetrance of craniosynostosis of 12.5%. > These results were also supported by immunofluorescence analyses which showed that missense variants within the PRRX1 homeodomain cause abnormal nuclear localisation (PMID: 37154149) > Authors discuss how the previous reports of agnathia-otocephaly doen't fit with this new evidence and they showed that a missense variant previously reported in a patient with agnathia-otocephaly p.(Phe113Leu) did not affect nuclear import. Supporting evidence: > Post-natal calvarial stem cells expressing Prrx1 have been shown to reside exclusively in the calvarial suture niche, suggesting a requirement for PRRX1 regarding suture patency during early development (PMID: 28366454) >Prrx1 has been shown to be widely expressed within the mouse coronal suture (PMID: 34376651) >Agnathia-otocephaly complex, 2 x missense variants (1 x het, 1 x hom) and 2 x frameshifts reported (het). The frameshift variants both occur in a poly A tract (PMID: 21294718, PMID: 22674740, PMID: 23444262, PMID: 22211708). |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1840 | PRRX1 |
Melanie Marty changed review comment from: > 17 individuals with Craniosynostosis from 14 families had been found to have rare heterozygous variants in PRRX1, loss of function variants (PTCs, start loss and partial/full gene del) or missense variants affecting the homeodomain. > These consisted of three de novo variants, but for the majority of cases the variant was inherited from an unaffected parent, yielding an estimate for the penetrance of craniosynostosis of 12.5%. > These results were also supported by immunofluorescence analyses which showed that missense variants within the PRRX1 homeodomain cause abnormal nuclear localisation (PMID: 37154149) Supporting evidence: > Post-natal calvarial stem cells expressing Prrx1 have been shown to reside exclusively in the calvarial suture niche, suggesting a requirement for PRRX1 regarding suture patency during early development (PMID: 28366454) >Prrx1 has been shown to be widely expressed within the mouse coronal suture (PMID: 34376651); to: > 17 individuals with Craniosynostosis from 14 families had been found to have rare heterozygous variants in PRRX1, loss of function variants (PTCs, start loss and partial/full gene del) or missense variants affecting the homeodomain. > These consisted of three de novo variants, but for the majority of cases the variant was inherited from an unaffected parent, yielding an estimate for the penetrance of craniosynostosis of 12.5%. > These results were also supported by immunofluorescence analyses which showed that missense variants within the PRRX1 homeodomain cause abnormal nuclear localisation (PMID: 37154149) > Authors discuss how the previous reports of agnathia-otocephaly don't fit with this new evidence and they showed that a missense variant previously reported in a patient with agnathia-otocephaly p.(Phe113Leu) did not affect nuclear import. Supporting evidence: > Post-natal calvarial stem cells expressing Prrx1 have been shown to reside exclusively in the calvarial suture niche, suggesting a requirement for PRRX1 regarding suture patency during early development (PMID: 28366454) >Prrx1 has been shown to be widely expressed within the mouse coronal suture (PMID: 34376651) |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1814 | FAM177A1 |
Chirag Patel gene: FAM177A1 was added gene: FAM177A1 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: FAM177A1 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: FAM177A1 were set to PMID: 38767059, 25558065 Phenotypes for gene: FAM177A1 were set to Neurodevelopmental disorder, MONDO_0100500 Review for gene: FAM177A1 was set to GREEN gene: FAM177A1 was marked as current diagnostic Added comment: PMID: 38767059 5 individuals from 3 unrelated families reported with with biallelic loss of function variants in FAM177A1. Clinical features included: global developmental delay, intellectual disability, seizures, behavioural abnormalities, hypotonia, gait disturbance, and macrocephaly. They showed that FAM177A1 localizes to the Golgi complex in mammalian and zebrafish cells. Intersection of the RNA-seq and metabolomic datasets from FAM177A1-deficient human fibroblasts and whole zebrafish larvae demonstrated dysregulation of pathways associated with apoptosis, inflammation, and negative regulation of cell proliferation. PMID: 25558065 A study of 143 multiplex consanguineous families identified a homozygous frameshift variant in FAM177A1 in 1 family with 4 affected siblings with intellectual disability, dolicocephaly, obesity, and macrocephaly. The variant segregated with all 4 affected siblings and parents were confirmed heterozygous carriers. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1797 | GABRA4 |
Zornitza Stark edited their review of gene: GABRA4: Added comment: Three more novel de novo missense variants in GABRA4 (NM_000809.4): c.797 C > T, p.(Pro266Leu), c.899 C > A, p.(Thr300Asn), and c.634 G > A, p.(Val212Ile) reported. The p.(Thr300Asn) variant impacts the same codon as the previously reported variant p.(Thr300Ile) and likely arose post-zygotically as evidenced by sequencing oral mucosal cells. Overlapping phenotypes among affected individuals included developmental delay (4/4), epileptiform EEG abnormalities (3/4), attention deficits (3/4), seizures (2/4), autistic features (2/4) and structural brain abnormalities (2/4).; Changed rating: GREEN; Changed publications: 35152403, 38565639; Changed phenotypes: Neurodevelopmental disorder MONDO:0700092, GABRA4-related |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1794 | B2M | Zornitza Stark edited their review of gene: B2M: Changed phenotypes: Amyloidosis, hereditary systemic 6, MIM# 620659, Immunodeficiency 43 MIM# 241600, Sinopulmonary infections, Purple-red skin lesions, Decreased serum IgG, Decreased B cells, Absent β2m associated proteins MHC-I, CD1a, CD1b, and CD1c, MONDO:0009434, Amyloidosis, familial visceral, MIM# 105200 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1790 | ZNF41 |
Zornitza Stark gene: ZNF41 was added gene: ZNF41 was added to Mendeliome. Sources: Expert Review disputed tags were added to gene: ZNF41. Mode of inheritance for gene: ZNF41 was set to X-LINKED: hemizygous mutation in males, biallelic mutations in females Publications for gene: ZNF41 were set to 14628291; 23871722 Phenotypes for gene: ZNF41 were set to non-syndromic X-linked intellectual disability MONDO:0019181 Review for gene: ZNF41 was set to RED Added comment: DISPUTED by ClinGen. Shoichet et al. (2003) described a female patient with severe nonsyndromic mental retardation and a de novo balanced translocation t(X;7)(p11.3;q11.21) in whom they cloned the DNA fragment that contained the X chromosomal and the autosomal breakpoint. In silico sequence analysis demonstrated that the ZNF41 gene was disrupted. Expression studies indicated that ZNF41 transcripts were absent in the patient cell line, suggesting that the mental disorder in this patient resulted from loss of functional ZNF41. Screening of patients with mental retardation led to the identification of 2 other ZNF41 mutations that were not found in healthy control individuals. Based on their finding of the mutations in ZNF41 identified by Shoichet et al. (2003) in a total of 7 males in the NHLBI Exome Variant Server, and the additional finding of truncating ZNF41 variants in 1 male and 1 female in that database, Piton et al. (2013) classified the involvement of ZNF41 in mental retardation as highly questionable. Sources: Expert Review |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1756 | CCDC91 |
Bryony Thompson gene: CCDC91 was added gene: CCDC91 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: CCDC91 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: CCDC91 were set to 38627542 Phenotypes for gene: CCDC91 were set to Punctate palmoplantar keratoderma type III MONDO:0007047 Review for gene: CCDC91 was set to AMBER Added comment: A single 3-generation Chinese acrokeratoelastoidosis family segregates c.1101 + 1 G > A (causes exon 11 skipping). In vitro knockdown experiments in cell lines demonstrated distended Golgi cisternae, cytoplasmic vesicle accumulation, and lysosome presence. Immnunostaining of si-CCDC91-human skin fibroblasts cells demonstrated tropoelastin accumulation in the Golgi and abnormal extracellular aggregates Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1736 | SLC39A12 |
Chirag Patel gene: SLC39A12 was added gene: SLC39A12 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: SLC39A12 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: SLC39A12 were set to PMID: 35486108 Phenotypes for gene: SLC39A12 were set to Retinitis pigmentosa, MONDO:0019200 Review for gene: SLC39A12 was set to RED Added comment: WES (with targeted analysis of SLC genes) in 913 cases from 785 families with inherited retinal dystrophy. They identified 1 homozygous variant in SLC39A12 in 1 individual with adult-onset mild widespread retinal degeneration with marked macular involvement. No functional data. RNA seq analysis revealed retinal expression in human samples. Immunohistochemistry of human and mouse retina revealed comprehensive expression in various retinal cells including retinal pigment epithelium. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1733 | SUPT7L |
Chirag Patel gene: SUPT7L was added gene: SUPT7L was added to Mendeliome. Sources: Literature Mode of inheritance for gene: SUPT7L was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: SUPT7L were set to PMID: 38592547 Phenotypes for gene: SUPT7L were set to Lipodystrophy, MONDO:0006573 Review for gene: SUPT7L was set to RED Added comment: 1 case with generalised lipodystrophy, growth retardation, congenital cataracts, severe developmental delay and progeriod features. Trio WGS identified compound heterozygous variants in SUPT7L (missense causing abnormal splicing + frameshift). Variants validated with Sanger. SUPT7L encodes a component of the core structural module of the STAGA complex - a nuclear multifunctional protein complex that plays a role in various cellular processes (e.g. transcription factor binding, protein acetylation, splicing, and DNA damage control). Immunolabelling in fibroblasts from patient showed complete absence of SUPT7L protein. Transcriptome data from individual revealed downregulation of several gene sets associated with DNA replication, DNA repair, cell cycle, and transcription. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1668 | GTF3C5 |
Bryony Thompson gene: GTF3C5 was added gene: GTF3C5 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: GTF3C5 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: GTF3C5 were set to 38520561; 35503477 Phenotypes for gene: GTF3C5 were set to neurodevelopmental disorder MONDO:0700092, GTF3C5-related Review for gene: GTF3C5 was set to GREEN Added comment: 4 families/probands with syndromic ID. Loss of function is the expected PMID: 38520561 - Biallelic variants identified (3 missense & 1 stopgain) in 4 individuals from 3 families presenting with multisystem developmental syndrome including the features: growth retardation, developmental delay, intellectual disability, dental anomalies, cerebellar malformations, delayed bone age, skeletal anomalies, and facial dysmorphism. Gene-disease relationship supported by: reduced protein expression in patient cells, yeast assays, and a zebrafish model PMID: 35503477 - 1 proband with biallelic missense variants and hypomelanosis of Ito, seizures, growth retardation, abnormal brain MRI, developmental delay, and facial dysmorphism Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1660 | TRPV5 |
Sangavi Sivagnanasundram changed review comment from: Not a well-established gene-disease association. Has only been reported in one consanguineous family. PMID: 38528055 3 individuals from the same family affected with hypercalciuria. Biallelic Met598Val variant was identified in the proband and his two affect sibs Functional assay using WT and mutant plasmid vectors were transfected into HEK293T cells. The assay showed that the mutant vector had a non-functional TRPV5 channel as compared to the WT however no positive control was used. Sources: Other; to: Not a well-established gene-disease association. Has only been reported in one consanguineous family. PMID: 38528055 3 individuals from the same family affected with hypercalciuria. Biallelic Met598Val variant was identified in the proband and his two affect sibs Functional assay using WT and mutant plasmid vectors were transfected into HEK293T cells. The assay showed that the mutant vector had a non-functional TRPV5 channel as compared to the WT however no positive control was used. PMID: 14679186 TRPV5 knockout mice model was used to assess whether the abolishment of TRPV5 led to a disruption in Ca2+ handling. The effects of the disruption in Ca2+ handling resulted in bone abnormalities in the mice and is likely the cause of idiopathic hypercalciuria. Sources: Other |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1660 | DOCK4 |
Sangavi Sivagnanasundram gene: DOCK4 was added gene: DOCK4 was added to Mendeliome. Sources: Other Mode of inheritance for gene: DOCK4 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown Publications for gene: DOCK4 were set to PMID: 38526744 Phenotypes for gene: DOCK4 were set to DOCK4-related neurodevelopmental disorder (MONDO:0060490) Review for gene: DOCK4 was set to GREEN Added comment: 7 unrelated individuals reported with heterozygous variants (missense or null variants) in DOCK4. The individuals either had ID or DD between mild and moderate with brain abnormalities. Two of the individuals are reportedly compound heterozygous. Functional assay neuro-2A Dock4 knockout cells by using the Alt-R CRISPR-Cas9 system utilizing two different guide RNAs (ko1 and ko2) and one nonspecific control guide RNA (C: control). The assay depicted the loss of function mechanism in the presence of either p.Arg853Leu and p.Asp946_Lys1966delinsValSer* (described as 945VS). Sources: Other |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1649 | PLXNB2 |
Chirag Patel gene: PLXNB2 was added gene: PLXNB2 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: PLXNB2 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: PLXNB2 were set to PMID: 38458752 Phenotypes for gene: PLXNB2 were set to Amelogenesis imperfecta MONDO:0019507, PLXNB2 -related; Sensorineural hearing loss disorder MONDO:0020678, PLXNB2 -related Review for gene: PLXNB2 was set to GREEN gene: PLXNB2 was marked as current diagnostic Added comment: 8 individuals from 6 families with core features of amelogenesis imperfecta and sensorineural hearing loss. Intellectual disability, ocular disease, ear developmental abnormalities and lymphoedema were also present in multiple cases. WES and WGS identified biallelic pathogenic variants in PLXNB2 (missense, nonsense, splice and a multiexon deletion variants). Variants segregated with disease. PLXNB2 is a large transmembrane semaphorin receptor protein, and semaphorin-plexin signalling controls cellular interactions that are critical during development as well as in adult life stages. Plxnb2 expression was detected in differentiating ameloblasts in mice. Human phenotype overlaps with that seen in Plxnb2 knockout mice. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1648 | CEP295 |
Chirag Patel gene: CEP295 was added gene: CEP295 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: CEP295 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: CEP295 were set to PMID: 38154379 Phenotypes for gene: CEP295 were set to Seckel syndrome 11, OMIM # 620767 Review for gene: CEP295 was set to GREEN gene: CEP295 was marked as current diagnostic Added comment: 4 children from 2 unrelated families with Seckel-like syndrome - severe primary microcephaly, short stature, developmental delay, intellectual disability, facial deformities, and abnormalities of fingers and toes. WES identified biallelic pathogenic variants in CEP295 gene (p(Q544∗) and p(R1520∗); p(R55Efs∗49) and p(P562L)). Patient-derived fibroblasts and CEP295-depleted U2OS and RPE1 cells were used to clarify the underlying mechanisms. Depletion of CEP295 resulted in a decrease in the numbers of centrioles and centrosomes and triggered p53-dependent G1 cell cycle arrest. Loss of CEP295 caused extensive primary ciliary defects in both patient-derived fibroblasts and RPE1 cells. The results from complementary experiments revealed that the wild-type CEP295, but not the mutant protein, can correct the developmental defects of the centrosome/centriole and cilia in the patient-derived skin fibroblasts. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1638 | TCN1 |
Bryony Thompson gene: TCN1 was added gene: TCN1 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: TCN1 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: TCN1 were set to 29764838; 19686235 Phenotypes for gene: TCN1 were set to transcobalamin I deficiency MONDO:0008659 Review for gene: TCN1 was set to AMBER Added comment: Unclear if TC1 deficiency is associated with a clinical phenotype and only found 2 families with genetic findings. 1 confirmed chet (2 truncating variants) with severe TC 1 deficiency (depression and anxiety only reported symptoms, had sickle cell trait) & another family with 2 siblings that are presumed homozygous for a truncating variant (no plasma or serum TC 1 levels but no DNA available for genetic testing) which was found heterozygous in multiple first-degree relatives. Unclear if there is a clinical phenotype. Heterozygous individuals displayed mildly low or low-normal TC 1 serum levels. Also, 4 homozygotes were identified in a study of a loss-of-function variant associated with lower vitamin B12 concentration in African Americans but there was limited ability to assess the clinical impact of the recessive disease Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1634 | FEM1B | Zornitza Stark edited their review of gene: FEM1B: Added comment: Five individuals reported now with same recurrent missense variant, NM_015322.5:c.377G>A NP_056137.1:p.(Arg126Gln). Affected individuals shared a severe neurodevelopmental disorder with behavioral phenotypes and a variable set of malformations, including brain anomalies, clubfeet, skeletal abnormalities, and facial dysmorphism. Overexpression of the the FEM1BR126Q variant but not FEM1B wild-type protein, during mouse brain development, resulted in delayed neuronal migration of the target cells.; Changed rating: GREEN; Changed publications: 31036916, 38465576; Changed phenotypes: Syndromic disease MONDO:0002254, FEM1B-related; Changed mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1634 | TRPV5 |
Sangavi Sivagnanasundram gene: TRPV5 was added gene: TRPV5 was added to Mendeliome. Sources: Other Mode of inheritance for gene: TRPV5 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: TRPV5 were set to PMID: 38528055 Phenotypes for gene: TRPV5 were set to TRPV5-related hypercalciuria (MONDO:0009550) Review for gene: TRPV5 was set to RED Added comment: Not a well-established gene-disease association. Has only been reported in one consanguineous family. PMID: 38528055 3 individuals from the same family affected with hypercalciuria. Biallelic Met598Val variant was identified in the proband and his two affect sibs Functional assay using WT and mutant plasmid vectors were transfected into HEK293T cells. The assay showed that the mutant vector had a non-functional TRPV5 channel as compared to the WT however no positive control was used. Sources: Other |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1601 | CELSR3 | Zornitza Stark Marked gene: CELSR3 as ready | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1601 | CELSR3 | Zornitza Stark Gene: celsr3 has been classified as Green List (High Evidence). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1601 | CELSR3 | Zornitza Stark Classified gene: CELSR3 as Green List (high evidence) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1601 | CELSR3 | Zornitza Stark Gene: celsr3 has been classified as Green List (High Evidence). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1596 | CIAO1 |
Paul De Fazio changed review comment from: PMID:38196629 (note pre-print) describes 4 unrelated patients with core features of progressive muscle weakness, respiratory insufficiency, joint hyperlaxity, ankle tightness, calf pseudohypertrophy, elevated CK, and larning disabilities/difficulties. 2 patients presented with increased iron deposition in the brain. Age of recognition of myopathic symptoms varied from early childhood to adolescence. PMID: 38411040 reports 2 unrelated patients. Patient 1 was born with microcephaly and borderline hypertonia, and died at 18 months of respiratory failure from bronchiolitis. Patient 2 presented with failure to thrive, a hyperkinetic movement disorder, and autism before deteriorating in late teens with muscle weakness, recurrent pneuomonia with respiratory insufficiency, and eventually death due to multi-organ failure with carnificating pneumonia, septic cardiomyopathy, and intracranial hemorrhages. Immune deficiency was ruled out. All variants reported were homozygous or compound heterozygous missense variants, with the exception of one large in-frame deletion of exon 7. Cell line studies showed the variants resulted in reduced protein stability and downstream cellular defects which could be rescued by wild-type CIAO1. Sources: Literature; to: PMID:38196629 (note pre-print) describes 4 unrelated patients with core features of progressive muscle weakness, respiratory insufficiency, joint hyperlaxity, ankle tightness, calf pseudohypertrophy, elevated CK, and larning disabilities/difficulties. 2 patients presented with increased iron deposition in the brain. Age of recognition of myopathic symptoms varied from early childhood to adolescence. Muscle biopsy showed variation in fiber size and an increase in internalized nuclei, as well as scattered degenerating/regenerating fibers and a mild to minimal increase in endomysial fibrosis. Electron microscopy revealed morphologically abnormal mitochondria. PMID: 38411040 reports 2 unrelated patients. Patient 1 was born with microcephaly and borderline hypertonia, and died at 18 months of respiratory failure from bronchiolitis. Patient 2 presented with failure to thrive, a hyperkinetic movement disorder, and autism before deteriorating in late teens with muscle weakness, recurrent pneuomonia with respiratory insufficiency, and eventually death due to multi-organ failure with carnificating pneumonia, septic cardiomyopathy, and intracranial hemorrhages. Immune deficiency was ruled out. All variants reported were homozygous or compound heterozygous missense variants, with the exception of one large in-frame deletion of exon 7. Cell line studies showed the variants resulted in reduced protein stability and downstream cellular defects which could be rescued by wild-type CIAO1. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1596 | MMS19 |
Paul De Fazio gene: MMS19 was added gene: MMS19 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: MMS19 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: MMS19 were set to 38411040 Phenotypes for gene: MMS19 were set to Neuromuscular disease, MMS19-related (MONDO:0019056) Penetrance for gene: MMS19 were set to unknown Review for gene: MMS19 was set to RED gene: MMS19 was marked as current diagnostic Added comment: Single patient reported with postnatal microcephaly, bilateral cataracts, failure to thrive, progressive spastic tetraparesis, scoliosis, myoclonic epilepsy and precocious puberty. Cerebral MRI at age 4 years showed pontocerebellar atrophy and white matter abnormalities. Patient died age 13 after recurrent respiratory tract infections. A homozygous in-frame deletion p.(Glu213del) was identified. Cell line studies supported pathogenicity of the variant. A zebrafish knockout model also showed a detrimental effect of Mms19 deficincy. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1596 | CIAO1 |
Paul De Fazio gene: CIAO1 was added gene: CIAO1 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: CIAO1 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: CIAO1 were set to 38411040; 38196629 Phenotypes for gene: CIAO1 were set to Neuromuscular disease, CIAO1-related (MONDO:0019056) Penetrance for gene: CIAO1 were set to unknown Review for gene: CIAO1 was set to GREEN gene: CIAO1 was marked as current diagnostic Added comment: PMID:38196629 (note pre-print) describes 4 unrelated patients with core features of progressive muscle weakness, respiratory insufficiency, joint hyperlaxity, ankle tightness, calf pseudohypertrophy, elevated CK, and larning disabilities/difficulties. 2 patients presented with increased iron deposition in the brain. Age of recognition of myopathic symptoms varied from early childhood to adolescence. PMID: 38411040 reports 2 unrelated patients. Patient 1 was born with microcephaly and borderline hypertonia, and died at 18 months of respiratory failure from bronchiolitis. Patient 2 presented with failure to thrive, a hyperkinetic movement disorder, and autism before deteriorating in late teens with muscle weakness, recurrent pneuomonia with respiratory insufficiency, and eventually death due to multi-organ failure with carnificating pneumonia, septic cardiomyopathy, and intracranial hemorrhages. Immune deficiency was ruled out. All variants reported were homozygous or compound heterozygous missense variants, with the exception of one large in-frame deletion of exon 7. Cell line studies showed the variants resulted in reduced protein stability and downstream cellular defects which could be rescued by wild-type CIAO1. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1587 | CELSR3 |
Crystle Lee gene: CELSR3 was added gene: CELSR3 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: CELSR3 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: CELSR3 were set to PMID: 38429302 Phenotypes for gene: CELSR3 were set to Neurodevelopmental disorder (MONDO#0700092), CELSR3-related Review for gene: CELSR3 was set to GREEN Added comment: PMID: 38429302:12 affected individuals from 11 families reported with bi-allelic variants. Phenotype ranged from CNS anomalies (7/12), CNS and CAKUT (3/12) and CAKUT only (2/12). Only missense variants reported and 1 inframe variant. Functional studies done in zebrafish demonstrate similar structural anomalies of the developing pronephros and neuronal abnormalities to affected individuals PMID: 34951123: 5 het missense variants reported in patients with febrile seizures (FS)/epilepsy. Arg3141Gln present in gnomAD (7 hets). No functional studies. Summarised as potentially associated with febrile seizures (FS)/epilepsy Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1587 | APOLD1 |
Lucy Spencer changed review comment from: PMID: 35638551 1 family with an atypical inherited bleeding disorder characterised by severe spontaneous bleeding episodes in childhood and microcirculatory problems. 4 affected individuals across 2 generations have R49*in APOLD1, another affected individual from a third generation was not able to be sequenced = 4 meiosis. 4 unaffected individuals did not have the variant. This gene has no NMD region, R49* would affect 82% of the protein. Paper is not using the MANE select transcript, alt p. in MANE select is R18* which affects 92% of the MANE select protein Interestingly R49* is created by a delins/2 missense in cis, 1 common R49Q and 1 rare R49W, some UNaffected family members just have the common missense without the other in cis. Immunofluorescence studies in patient platelets showed a 50% reduction of APOLD1 and disrupted cytoskeletal and junctional organization. Sources: Literature; to: PMID: 35638551 1 family with an atypical inherited bleeding disorder characterised by severe spontaneous bleeding episodes in childhood and microcirculatory problems. 4 affected individuals across 2 generations have R49*in APOLD1, another affected individual from a third generation was not able to be sequenced = 4 meiosis. 4 unaffected individuals did not have the variant. This gene has no NMD region, R49* would affect 82% of the protein. Paper is not using the MANE select transcript, alt p. in MANE select is R18* which affects 92% of the MANE select protein Interestingly R49* is created by a delins/2 missense in cis, 1 common R49Q and 1 rare R49W, some UNaffected family members just have the common missense without the other in cis. Immunofluorescence studies in patient platelets showed a 50% reduction of APOLD1 and disrupted cytoskeletal and junctional organization. SiRNA silencing of APOLD1 in HBDEC cells resulted in altered cell shape and size, and were associated with endothelial cell junction dismantling. These cells were also almost devoid of VWF. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1583 | TOGARAM2 |
Naomi Baker gene: TOGARAM2 was added gene: TOGARAM2 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: TOGARAM2 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: TOGARAM2 were set to PMID:38374469 Phenotypes for gene: TOGARAM2 were set to Nonsyndromic genetic hearing loss (MONDO:0019497), TOGARAM2-related Review for gene: TOGARAM2 was set to RED Added comment: Paper reports one individual with bilateral profound hearing loss with a homozygous TOGARAM2 nonsense variant and demonstrated reduced mRNA expression in transfected cells. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1581 | TUBA4A |
Sarah Pantaleo gene: TUBA4A was added gene: TUBA4A was added to Mendeliome. Sources: Literature Mode of inheritance for gene: TUBA4A was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: TUBA4A were set to PMID: 38413182 Phenotypes for gene: TUBA4A were set to Congenital myopathy MONDO:0019952 Review for gene: TUBA4A was set to AMBER Added comment: One novel TUBA4A variant in two unrelated Chinese patients with sporadic congenital myopathy. Identified candidate genes using laser capture micro dissection, proteomics, WES, clinical data, myopathological changes, electrophysiological exams and thigh muscle MRIs. The variant is de novo in both patients, c.679C>T, p.(Leu227Phe). The prominent myopathological changes in both patients were muscle fibres with focal myofibrillar disorganisation and rimmed vacuoles. Immunofluorescence showed ubiqution-positive TUBA4A protein aggregates in the muscle fibres with rimmed vacuoles. Overexpression of Leu227Phe resulted in cytoplasmic aggregates which colocalised with ubiquitin in cellular model. Patient 1 is 14yo and had delayed motor development milestones since infancy. Myopathic face, high-arched palate, waddling gait, winged scapula and muscle weakness in four limbs with lower extremities and proximal muscle more severely affected. Follow up at 14yo showed slight improvement in motor function compared with 3yo. Patient 2 is 6yo and presented with motor retardation since birth. At 3yo, presented with mild ptosis and ophthalmoparesis, high-arched palate and muscle weakness involving both proximal and distal in all limbs. No likely pathogenic variants in 116 other protein-encoding genes. Variants confirmed by Sanger sequencing and absent from gnomAD. ACMG predicts likely pathogenic classification. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1543 | ONECUT1 |
Bryony Thompson gene: ONECUT1 was added gene: ONECUT1 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: ONECUT1 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: ONECUT1 were set to 37639628; 34663987; 10825208 Phenotypes for gene: ONECUT1 were set to Neonatal diabetes mellitus MONDO:0016391 Review for gene: ONECUT1 was set to GREEN Added comment: 3 unrelated neonatal diabetes cases with homozygous variants & supporting iPSC/mouse models PMID: 37639628 - UK biobank study of ONECUT1 variants in neonatal diabetes mellitus (NDM), MODY, and type 2 diabetes. Identified a case with syndromic NDM with a homozygous frameshift (p.Met289Argfs*8). Rare heterozygous variants were not enriched in individuals with suspected MODY (n=484). Heterozygous null variants were significantly associated with type 2 diabetes (p=0.006) as a potential susceptibility gene. PMID: 34663987 - 2 consanguineous families with homozygous variants (Glu231Ter or Glu231Asp) in cases with syndromic ND. Directed differentiation of human pluripotent stem cells revealed that loss of ONECUT1 impairs pancreatic progenitor formation. PMID: 10825208 - Hnf6 (old gene name) null mice have diabetes Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1513 | NUP160 |
Melanie Marty changed review comment from: PMID: 30910934 1 x patient with familial steroid-resistant nephrotic syndrome (SRNS) and FSGS carried novel compound-heterozygous variants in NUP160 (R1173X and E803K). Silencing of Drosophila NUP160 specifically in nephrocytes (fly renal cells) led to functional abnormalities, reduced cell size and nuclear volume, and disorganized nuclear membrane structure. These defects were completely rescued by the expression of the wild-type human NUP160 gene in nephrocytes. PMID: 30179222 1 x family (2 sibs) with compound het variants E803K and Arg910X. 1 Sib had SRNS and FSGS, the other had proteinuria. PMID: 33456446 1 x family (2 sibs) with steroid-resistant nephrotic syndrome and chronic kidney disease. Homozygous for NUP160 c.1179+5G>A, confirmed by RT-PCR to cause abnormal splicing [r.1102_1179del;p.(Phe368_Gln393del)]. These individuals also had additional neurological features of intellectual disability and epilepsy. PMID: 38224683 Generated a podocyte-specific Nup160 knockout (Nup160podKO) mouse mode using CRISPR/Cas9 and Cre/loxP technologies. They showed that Nup160podKO mice develop typical signs of NS.; to: PMID: 30910934 1 x patient with familial steroid-resistant nephrotic syndrome (SRNS) and FSGS carried novel compound-heterozygous variants in NUP160 (R1173X and E803K). Silencing of Drosophila NUP160 specifically in nephrocytes (fly renal cells) led to functional abnormalities, reduced cell size and nuclear volume, and disorganized nuclear membrane structure. These defects were completely rescued by the expression of the wild-type human NUP160 gene in nephrocytes. PMID: 30179222 1 x family (2 sibs) with compound het variants E803K and Arg910X. 1 Sib had SRNS and FSGS, the other had proteinuria. PMID: 33456446 1 x family (2 sibs) with SRNS and chronic kidney disease. Homozygous for NUP160 c.1179+5G>A, confirmed by RT-PCR to cause abnormal splicing [r.1102_1179del;p.(Phe368_Gln393del)]. These individuals also had additional neurological features of intellectual disability and epilepsy. PMID: 38224683 Generated a podocyte-specific Nup160 knockout (Nup160podKO) mouse model using CRISPR/Cas9 and Cre/loxP technologies. They showed that Nup160podKO mice develop typical signs of NS. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1457 | BORCS8 |
Lauren Rogers changed review comment from: 3 unrelated families with five affected children with homozygous or compound heterozygous loss of function missense and PTC variants. HEK293T cells show the missense variants are expressed at normal levels but exhibit reduced assembly with other BORC subunits and reduced ability to drive lysosome distribution. The BORCS8 PTC frameshift variant is expressed at lower levels and is completely incapable of assembling with other BORC subunits and promoting lysosome distribution. Zebrafish KO of the orthologous brocs8 causes decreased brain and eye size, neuromuscular anomalies and impaired locomotion, recapitulating some of the key traits of the human disease. Sources: Literature; to: 3 unrelated families with five affected children with homozygous or compound heterozygous loss of function missense and PTC variants. 5/5 hypotonia, failure to thrive, global developmental delay, profound intellectual disability, muscle weakness and atrophy, dysmorphic features. 3/5 with microcephaly, 3/5 with seizures, 4/5 with spasticity, 3/5 with scoliosis, 4/4 with optic atrophy. HEK293T cells show the missense variants are expressed at normal levels but exhibit reduced assembly with other BORC subunits and reduced ability to drive lysosome distribution. The BORCS8 PTC frameshift variant is expressed at lower levels and is completely incapable of assembling with other BORC subunits and promoting lysosome distribution. Zebrafish KO of the orthologous brocs8 causes decreased brain and eye size, neuromuscular anomalies and impaired locomotion, recapitulating some of the key traits of the human disease. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1457 | BORCS8 |
Lauren Rogers gene: BORCS8 was added gene: BORCS8 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: BORCS8 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: BORCS8 were set to 38128568 Phenotypes for gene: BORCS8 were set to Neurodevelopmental disorder (MONDO#0700092), BORCS8-related Review for gene: BORCS8 was set to GREEN Added comment: 3 unrelated families with five affected children with homozygous or compound heterozygous loss of function missense and PTC variants. HEK293T cells show the missense variants are expressed at normal levels but exhibit reduced assembly with other BORC subunits and reduced ability to drive lysosome distribution. The BORCS8 PTC frameshift variant is expressed at lower levels and is completely incapable of assembling with other BORC subunits and promoting lysosome distribution. Zebrafish KO of the orthologous brocs8 causes decreased brain and eye size, neuromuscular anomalies and impaired locomotion, recapitulating some of the key traits of the human disease. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1442 | LCK |
Zornitza Stark edited their review of gene: LCK: Added comment: Additional cases: PMID 38100037: Description of a second unrelated patient with novel biallelic missense LCK c.1393T>C, p.C465R variant in a patient from a consanguineous Syrian family with profound T-cell immune deficiency characterized by complete LCK protein expression deficiency and ensuing proximal TCR signaling-and CD4 and CD8-co-receptor-mediated functional and phenotypical defects. PMID: 27087313 reported 3 siblings of a consanguineous family presenting with recurrent pneumonia and severe viral skin disease leading to malignant transformation. The patients had an intronic LCK c.188-2A>G splice site variant resulting in skipping of exon 3 and mRNA decay. Clinical data alongside with CD4+ T-cell lymphocytopenia suggested a hypomorphic LCK deficiency.; Changed rating: GREEN; Changed publications: 22985903, 1579166, 11021796, 27087313, 38100037 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1436 | MAP1LC3B2 |
Zornitza Stark gene: MAP1LC3B2 was added gene: MAP1LC3B2 was added to Mendeliome. Sources: Expert Review Mode of inheritance for gene: MAP1LC3B2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: MAP1LC3B2 were set to 35748970; 33310865 Phenotypes for gene: MAP1LC3B2 were set to Hereditary susceptibility to infection, MONDO:0015979, MAP1LC3B2 -related; Mollaret’s meningitis (recurrent lymphocytic meningitis) due to HSV2 Review for gene: MAP1LC3B2 was set to RED Added comment: PMID: 35748970 Affects CNS (resident cells and fibroblasts) Impaired autophagy induction after HSV2 infection - increased viral replication and apoptosis of patient fibroblasts. PMID: 33310865 one affected individual with heterozygous variant in MAP1LC3B2 (p.L109M) Sources: Expert Review |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1421 | KIF5B | Zornitza Stark edited their review of gene: KIF5B: Added comment: Four additional patients with three distinct de-novo missense variants and features consistent with osteogenesis imperfecta. All variants are in the Kinesin motor domain (~50% of the protein). Functional data in C. Elegans and cell lines shows impaired protein function. Not clear what distinguishes OI causing variants from other phenotypes for this gene at this stage. Dominant negative effect proposed but not conclusively proven.; Changed publications: 37934770; Changed phenotypes: Skeletal dysplasia, MONDO:0018230, osteogenesis imperfecta, MONDO:0019019 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1408 | CEP192 |
Chern Lim gene: CEP192 was added gene: CEP192 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: CEP192 was set to BOTH monoallelic and biallelic, autosomal or pseudoautosomal Publications for gene: CEP192 were set to 37981762 Phenotypes for gene: CEP192 were set to microcephaly, short stature, limb-extremity dysplasia, and reduced testicular size Review for gene: CEP192 was set to RED gene: CEP192 was marked as current diagnostic Added comment: PMID: 37981762: - In one family, chet missense p.His638Tyr and p.Asn1917Ser segregated with microcephaly, short stature, limb-extremity dysplasia, and reduced testicular size in two affected siblings. Both sibs also fulfilled dx for mosaic variegated aneuploidy (MVA) syndrome and have tetraploidy. - A lower but substantial proportion of MVA/tetraploidy cells was observed in II-1, II-2, and II-4 (who are het for one of the variants). - In the same family, each variants in heterozygous state segregated with infertility and/or reduced testicular size in the proband’s father and maternal uncle. - Variant screening of CEP192 coding regions performed for 1264 unrelated males with idiopathic infertility. - Asn1917Ser was also detected in three additional unrelated infertile males with reduced testicular volumes. - Two other missense and two synonymous variants were repeatedly detected in infertile males. - qPCR showed CEP192 expression was decreased in individuals with c.1912C>T His638Tyr, mini-gene assay showed that c.1912C>T His638Tyr led to the skipping of exon 14, predicted to result in NMD. - Epithelial cells cultured in vitro from patients with biallelic variants showed the number of cells arrested during the prophase increased because of the failure of spindle formation. - Embyronic mouse lethality in Cep192-/- (hom for His638Tyr), Cep192M/M (hom for Asn1917Ser) and Cep192-/M (chet). - Embryos of Cep192M/M mice had significant increase of MVA and tetraploidy cells. - Number of apoptotic cells increased in Cep192M/M embryos compared with that of Cep192+/+, similar result in Cep192-/- embryos. - Male mice with Cep192 heterozygous variants replicated infertility Conclusions: - Association of this gene with autosomal recessive disease has not been established. - Association of monoallelic variants in this gene with infertility is not well established: - Two variants with some supportive evidence from mouse model. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1402 | KCNJ3 |
Daniel Flanagan gene: KCNJ3 was added gene: KCNJ3 was added to Mendeliome. Sources: Expert list Mode of inheritance for gene: KCNJ3 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: KCNJ3 were set to PMID: 37963718 Phenotypes for gene: KCNJ3 were set to Epilepsy (MONDO#0005027), KCNJ3-related Review for gene: KCNJ3 was set to AMBER Added comment: Two de novo missense variants, p.(Leu333Ser) and p.(Arg313Gln), were identified in two unrelated probands with epilepsy. 1/2 had developmental delay. Whole-cell patch-clamp functional studies showed a significantly reduction in current amplitude and density. Kcnj3-knockout mice display hyperactivity and decreased anxiety, while a knock-in mouse line displays spontaneous seizure-like activity. Sources: Expert list |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1401 | PLA2G16 |
Lauren Rogers changed review comment from: 7 patients from 4 unrelated consanguineous families with homozygous loss of function PTC variants. Features: 4/7 metabolic features, 6/7 neurological/skeletal features, 3/7 Psychomotor retardation/intellectual disability, 5/7 demyelinating peripheral neuropathy. Null mouse and patient derived white adipose tissue showed enrichment of arachidonic acid-containing membrane phospholipids and a strong decrease in PPARγ. CRISPR–Cas9-mediated PLAAT3 inactivation in human adipose stem cells induced insulin resistance, altered adipocyte diferentiation with decreased lipid droplet formation and reduced the expression of adipogenic and mature adipocyte markers, including PPARγ. Sources: Literature; to: 7 patients from 4 unrelated consanguineous families with homozygous loss of function PTC variants. Features: 4/7 metabolic features, 6/7 neurological/skeletal features, 3/7 Psychomotor retardation/intellectual disability, 5/7 demyelinating peripheral neuropathy. Null mouse and patient derived white adipose tissue showed enrichment of arachidonic acid-containing membrane phospholipids and a strong decrease in PPARγ. CRISPR–Cas9-mediated PLAAT3 inactivation in human adipose stem cells induced insulin resistance, altered adipocyte differentiation with decreased lipid droplet formation and reduced the expression of adipogenic and mature adipocyte markers, including PPARγ. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1401 | PLA2G16 |
Lauren Rogers gene: PLA2G16 was added gene: PLA2G16 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: PLA2G16 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown Publications for gene: PLA2G16 were set to PMID: 37919452 Phenotypes for gene: PLA2G16 were set to Lipodystrophy (MONDO:0006573) Review for gene: PLA2G16 was set to GREEN Added comment: 7 patients from 4 unrelated consanguineous families with homozygous loss of function PTC variants. Features: 4/7 metabolic features, 6/7 neurological/skeletal features, 3/7 Psychomotor retardation/intellectual disability, 5/7 demyelinating peripheral neuropathy. Null mouse and patient derived white adipose tissue showed enrichment of arachidonic acid-containing membrane phospholipids and a strong decrease in PPARγ. CRISPR–Cas9-mediated PLAAT3 inactivation in human adipose stem cells induced insulin resistance, altered adipocyte diferentiation with decreased lipid droplet formation and reduced the expression of adipogenic and mature adipocyte markers, including PPARγ. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1401 | SEL1L |
Sarah Pantaleo gene: SEL1L was added gene: SEL1L was added to Mendeliome. Sources: Literature Mode of inheritance for gene: SEL1L was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: SEL1L were set to PMID: 37943610; PMID: 37943617 Phenotypes for gene: SEL1L were set to Neurodevelopmental disorder, MONDO:0700092, SEL1L-related Penetrance for gene: SEL1L were set to Complete Added comment: Wang paper PMID: 37943610 SEL1L protein is involved in the SEL1L-HRD1 endoplasmic reticulum (ER)-associated degradation. Report two biallelic missense variants in SEL1L in six children from three independent families presenting with developmental delay, intellectual disability, microcephaly, facial dysmorphisms, hypotonia and/or ataxia (termed ERAD-associated neurodevelopment disorder with onset in infancy (ENDI). The variants were hypomorphic and impaired ERAD function. Identified by WES. Parents heterozygous and asymptomatic. P.(Gly585Asp) in Patient 1, p.(Met528Arg) in Patients 2 and 3 (siblings). All variants cause substrate accumulation. The extent of substrate accumulation in knockin cells was modest compared to those in knockout cells, pointing to a hypomorphic nature. They also had a variant in HRD1. Weis paper PMID: 37943617 Third variant p.(Cys141Tyr), biallelic, causing premature death in five patients from a consanguineous family with early-onset neurodevelopmental disorders and agammaglobulinaemia due to severe SEL1L-HRD1 ERAD dysfunction. This variant appears to have a more severe outcome, exhibiting B cell depletion and agammaglobulinaemia, causing the most severe dysfunction among all of the variants described by this group so far. They postulate that functionality of SEL1L-HRD1 ERAD is inversely correlated with disease severity in humans. Their symptoms were dev delay, neurological disorder and agammaglobulinaemia in childhood. Along with severe axial hypotonia, short stature and microcephaly. “Not a complete loss-of-function variant”. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1381 | KDR |
Zornitza Stark edited their review of gene: KDR: Added comment: PMID 34113005: Exome sequencing in a family with two siblings affected by ToF revealed biallelic missense variants in KDR. Studies in knock-in mice and in HEK 293T cells identified embryonic lethality for one variant when occurring in the homozygous state, and a significantly reduced VEGFR2 phosphorylation for both variants. Rare variant burden analysis conducted in a set of 1,569 patients of European descent with ToF identified a 46-fold enrichment of protein-truncating variants (PTVs) in TOF cases compared to controls (P = 7 × 10-11). At this stage MOI unclear and insufficient evidence for either MOI.; Changed publications: 31980491, 29650961, 18931684, 34113005; Changed phenotypes: Pulmonary hypertension, Haemangioma, capillary infantile, somatic 602089, Tetralogy of Fallot, MONDO:0008542; Changed mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1380 | DOT1L |
Zornitza Stark gene: DOT1L was added gene: DOT1L was added to Mendeliome. Sources: Literature Mode of inheritance for gene: DOT1L was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: DOT1L were set to 37827158 Phenotypes for gene: DOT1L were set to Neurodevelopmental disorder, MONDO:0700092, DOT1L-related Mode of pathogenicity for gene: DOT1L was set to Loss-of-function variants (as defined in pop up message) DO NOT cause this phenotype - please provide details in the comments Review for gene: DOT1L was set to GREEN Added comment: Nine individuals reported with seven de novo missense variants. All had DD/ID and variable patterns of associated congenital anomalies. Variants demonstrated to be GoF and lead to increased H3K79 methylation levels in flies and human cells. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1363 | MDM4 |
Bryony Thompson gene: MDM4 was added gene: MDM4 was added to Mendeliome. Sources: Other Mode of inheritance for gene: MDM4 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: MDM4 were set to 32300648; 33104793 Phenotypes for gene: MDM4 were set to bone marrow failure syndrome MONDO:0000159, MDM4-related Review for gene: MDM4 was set to AMBER Added comment: A single family was reported to segregate a missense variant (p.Thr454Met) with features suggestive of dyskeratosis congenita, e.g., bone marrow hypocellularity, short telomeres, tongue squamous cell carcinoma, and acute myeloid leukemia. A mouse model of p.Thr454Met showed increased p53 activity, decreased telomere length, and bone marrow failure. Sources: Other |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1351 | FMNL2 |
Achchuthan Shanmugasundram gene: FMNL2 was added gene: FMNL2 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: FMNL2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: FMNL2 were set to 34043722 Phenotypes for gene: FMNL2 were set to inflammatory bowel disease, MONDO:0005265 Mode of pathogenicity for gene: FMNL2 was set to Loss-of-function variants (as defined in pop up message) DO NOT cause this phenotype - please provide details in the comments Review for gene: FMNL2 was set to AMBER Added comment: A patient was reported with a de novo heterozygous FMNL2 variant (p.Leu136Pro) and with severe very early onset inflammatory bowel disease (IBD). The functional characterisation of this variant showed that FMNL2 L136P protein displayed subcellular mislocalisation and deregulated protein autoinhibition indicating gain-of-function mechanism (PMID:34043722). Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1348 | MYO9B | Elena Savva Phenotypes for gene: MYO9B were changed from {Celiac disease, susceptibility to, 4} MIM#609753 to Charcot-Marie-Tooth disease type 2 (MONDO:0018993), MYO9B-related | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1340 | CCDC66 |
Anna Ritchie gene: CCDC66 was added gene: CCDC66 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: CCDC66 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: CCDC66 were set to PMID: 37852749 Review for gene: CCDC66 was set to RED Added comment: Nonsense variant (c.172C>T, p.Q58X) segregating in family with 5 affected members with high myopia (HM). Additionally, one family member with the variant displayed no symptoms, hinting at possible incomplete penetrance. Six other rare variants were identified in 200 sporadic high myopia patients that could potentially be linked to HM. A deficiency in CCDC66 might disrupt cell proliferation by influencing the mitotic process during retinal growth, leading to HM. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1330 | MIEF1 |
Lucy Spencer gene: MIEF1 was added gene: MIEF1 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: MIEF1 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown Publications for gene: MIEF1 were set to 33632269 Phenotypes for gene: MIEF1 were set to Optic atrophy 14 (MIM#620550) Review for gene: MIEF1 was set to AMBER Added comment: PMID: 33632269 Inherited optic neuropathies cohort from france with nothing found in OPA1, OPA3 and WFS1 or mtDNA. 2 individuals (55 and 47yo) found to have missense variant in MIEF1, p.Arg146Trp has 35 hets 0 homs in gnomad, p.Tyr240Asn is absent. Both have non-syndromic late onset inherited optic neuropathies characterized by initial loss of peripheral visual fields. Functional studies in HeLa cells- both missense localised to the mitochondria and formed oligomers similar to WT. MIEF1 normally regulates mitochondrial fission dynamics and causes an increase in mitochondrial fusion events, however both missense variants caused a significantly decreased mitochondrial fusion events. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1318 | ZFHX3 | Zornitza Stark edited their review of gene: ZFHX3: Added comment: 41 individuals with protein truncating variants (PTVs) or (partial) deletions of ZFHX3. Presentations included (mild) ID and/or behavioural problems, postnatal growth retardation, feeding difficulties, dysmorphism (rarely cleft palate). Nuclear abundance of ZFHX3 increases during human brain development and neuronal differentiation in neural stem cells and SH-SY5Y cells, ZFHX3 interacts with the chromatin remodelling BRG1/Brm-associated factor complex and the cleavage and polyadenylation complex. ZFHX3 haploinsufficiency associates with a specific DNA methylation profile in leukocyte-derived DNA, and participates in chromatin remodelling and mRNA processing.; Changed publications: 37292950; Changed phenotypes: Neurodevelopmental disorder, MONDO:0700092, ZFHX3-related | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1254 | CFAP20 |
Sarah Pantaleo gene: CFAP20 was added gene: CFAP20 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: CFAP20 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: CFAP20 were set to PMID:36329026 Phenotypes for gene: CFAP20 were set to Retinitis pigmentosa (MONDO:0019200) Review for gene: CFAP20 was set to GREEN Added comment: CFAP20 is a ciliopathy candidate. Demonstrate in zebrafish that cfap20 is required for motile cilia function, and in C. elegans, CFAP-20 maintains the structural integrity of non-motile cilia inner junctions, influencing sensory-dependent signalling and development. Human patients and zebrafish with CFAP20 mutations both exhibit retinal dystrophy (retinitis pigments). Hence, CFAP20 functions within a structural./functional hub centred on the inner junction that is shared between motile and non-motile cilia, and is distinct from other ciliopathy-associaetd domains or macromolecular complexes. Describe 8 individuals from 4 independent families with damaging biallelic variants (homozygous or compound heterozygous) in CFAP20 that segregate with retinal dystrophy. All variants cluster to one side of the protein, with two of the residues directly contacting alpha-tubullin. Family 1 - consanguineous set of 3 siblings from Sudan, homozygous for CFAP20 c.305G>A; p.Arg102His (they also had a homozygous variant in DYNC1LI2 however CFAP20 was considered the better candidate. Family 2 - 3 siblings from Spain, 2 with retinal dystrophy, 1 genetically tested and has c.337C>T; p.(Arg113Trp) and c.397delC; p.(Gln133Serfs*5) Family 3 - single affected family member compound het for c.164+1G>A and c.457A>G; p.(Arg153Gly). Family 4 - 3 affected siblings with generalised retinopathy and variable neurological deficits with c.164+1G>A and c.257G>A; p.(Tyr86Cys) For all families, no individuals had signs of polycystic kidney disease; however, not all individuals had kidney imaging. Visual defecit phenotype presented between adolescence and adulthood (17-56 years old). Used HEK293T cell expression studies to demonstrate a statistically significant decline of mutated CFAP20 protein levels (with the exception of p.Arg102His). To test the specific variants, they used the C.elegans orthologues. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1251 | CDC23 |
Michelle Torres gene: CDC23 was added gene: CDC23 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: CDC23 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: CDC23 were set to 37768355 Phenotypes for gene: CDC23 were set to inherited oocyte maturation defect MONDO#0014769, CDC23-related Review for gene: CDC23 was set to GREEN Added comment: Two missense variants, p.(Y329C) and p.(R330C), detected in three unrelated homozygous infertile females characterised by oocyte maturation defects. In vitro studies using HeLa cells showed either decreased protein levels (Y329C) or impaired localisation (R330C). In vivo studies in mice homozygous for Y329C reproduced patient’s phenotype. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1251 | GPRASP1 |
Paul De Fazio gene: GPRASP1 was added gene: GPRASP1 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: GPRASP1 was set to X-LINKED: hemizygous mutation in males, biallelic mutations in females Publications for gene: GPRASP1 were set to 37787182 Phenotypes for gene: GPRASP1 were set to Arteriovenous hemangioma/malformation, GPRASP1-related, MONDO:0001256 Penetrance for gene: GPRASP1 were set to unknown Review for gene: GPRASP1 was set to AMBER gene: GPRASP1 was marked as current diagnostic Added comment: Two hemizygous germline missense variants, p.Arg1167Trp and p.Trp553Cys, were identified in three male patients presenting with spinal AVM, Cobb syndrome, or scalp AVM. The variants were inherited from unaffected heterozygous mothers. Note that p.Arg1167Trp has hemizygous (>70) and homozygous individuals reported in gnomAD. The variants were found to result in LoF in endothelial cells. Endothelial Gprasp1 knockout mice suffered a high probability of cerebral hemorrhage, AVMs, and exhibited vascular anomalies in multiple organs. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1229 | CASP4 |
Zornitza Stark gene: CASP4 was added gene: CASP4 was added to Mendeliome. Sources: Expert Review Mode of inheritance for gene: CASP4 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: CASP4 were set to 37647624 Phenotypes for gene: CASP4 were set to Hereditary susceptibility to infection, MONDO:0015979, CASP4-related; Susceptibility to meliodiosis Review for gene: CASP4 was set to RED Added comment: Single patient with severe disease secondary to B. pseudomallei requiring ECMO. Adjunctive IFN-γ administration as replacement for its failed induction by IL-18 promptly led to clearance of B. pseudomallei and subsequent weaning of support. Novel homozygous missense mutation in CASP4, at exon 7 c.1030C > T. Peripheral blood mononuclear cells (PBMC) of the patient and her parents showed reduced IFN-γ production, notably to IL-12 stimulation, and decreased IL-18 in response to LPS and increased IL-1B. Cloned cells show impacts on CASP4 activation and pyroptosis. Sources: Expert Review |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1213 | CELA3B | Zornitza Stark Phenotypes for gene: CELA3B were changed from Chronic pancreatitis to Chronic pancreatitis, MONDO:0008185, CELA3B-related | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1163 | GJA4 |
Zornitza Stark gene: GJA4 was added gene: GJA4 was added to Mendeliome. Sources: Expert Review somatic tags were added to gene: GJA4. Mode of inheritance for gene: GJA4 was set to Other Publications for gene: GJA4 were set to 33912852 Phenotypes for gene: GJA4 were set to Cavernous hemangioma, MONDO:0003155, GJA4-related Review for gene: GJA4 was set to GREEN Added comment: Recurrent somatic GJA4 c.121G>T (p.Gly41Cys) mutation as a driver of hepatic (n=12) and cutaneous (n=3) vascular malformations. Induced changes in cell morphology and activated serum/glucocorticoid-regulated kinase 1 (SGK1), a serine/threonine kinase known to regulate cell proliferation and apoptosis, via non-canonical activation, in lentiviral transduction of primary human endothelial cells. Sources: Expert Review |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1156 | APOO |
Zornitza Stark edited their review of gene: APOO: Added comment: PMID: 37649161 1 family, 2 individuals (male & female) with same NMD variant c.532G>T (p.E178*), maternally inherited (mother unaffected). Both died before 18 months of age with partial agenesis of the corpus callosum, bilateral congenital cataract, hypothyroidism, and severe immune deficiencies. Other phenotypes included partial syndactyly of the 2nd and 3rd toes, wrinkled palm, and sole skin. Functional studies included site directed mutagenesis. This mutation resulted in a highly unstable and degradation prone MIC26 protein, yet the remaining minute amounts of mutant MIC26 correctly localized to mitochondria and interacted physically with other MICOS subunits. MIC26 KO cells expressing MIC26 harboring the respective APOO/MIC26 mutation showed mitochondria with perturbed cristae architecture and fragmented morphology resembling MIC26 KO cells.; Changed publications: 37649161; Changed phenotypes: Mitochondrial disease, MONDO:0044970, APOO-related, Developmental delay, Lactic acidosis, Muscle weakness, Hypotonia, Repetitive infections, Cognitive impairment, Autistic behaviour |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1155 | COL4A3BP |
Ee Ming Wong changed review comment from: - Thirty-one unrelated individuals with twenty-two distinct missense variants. The majority of variants were de novo. - Several variants transfected into HeLa cells demonstrated gain of CERT activity - CERT gain of function in Drosophila melanogaster led to head and brain size defects and impaired locomotor activity, which was corrected by pharmacological inhibition of CERT; to: - current HGNC symbol: CERT1 - Thirty-one unrelated individuals with twenty-two distinct missense variants. The majority of variants were de novo. - Several variants transfected into HeLa cells demonstrated gain of CERT activity - CERT gain of function in Drosophila melanogaster led to head and brain size defects and impaired locomotor activity, which was corrected by pharmacological inhibition of CERT |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1125 | STAT5B |
Zornitza Stark changed review comment from: Both bi-allelic and mono allelic (GoF) inheritance reported. AD GoF phenotype: increased IgE, growth failure, eczema but no immune defects compared to AR phenotype (modestly decreased T cells, reduced Tregs and function, hypergammaglobulinaemia, increased IgE).; to: Both bi-allelic and mono allelic (GoF) inheritance reported. AD GoF phenotype: increased IgE, growth failure, eczema but no immune defects compared to AR phenotype (modestly decreased T cells, reduced Tregs and function, hypergammaglobulinaemia, increased IgE). Somatic variants also reported. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1111 | ECEL1 | Achchuthan Shanmugasundram reviewed gene: ECEL1: Rating: AMBER; Mode of pathogenicity: None; Publications: 30131190, 37010288; Phenotypes: Arthrogryposis, distal, type 5D, OMIM:615065; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1103 | PSMC3 | Zornitza Stark edited their review of gene: PSMC3: Added comment: PMID:37256937 - 23 individuals with neurodevelopmental disorder was identified with 15 different de novo missense variants. Apart from one child (patient 2), all others had developmental delay characterised by speech delay (19/19) alone or with intellectual disability (16/18) and motor delay (15/19). In addition, structural modeling as well as proteomic and transcriptomic analyses of T cells derived from patients with PSMC3 variants implicated the PSMC3 variants in proteasome dysfunction through disruption of substrate translocation, induction of proteotoxic stress, and alterations in proteins controlling developmental and innate immune program.; Changed rating: GREEN; Changed publications: 32500975, 37256937; Changed phenotypes: neurodevelopmental disorder, MONDO:0700092, PSMC3-related, Deafness, cataract, impaired intellectual development, and polyneuropathy, MIM#619354; Changed mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1085 | PRDM10 | Zornitza Stark Phenotypes for gene: PRDM10 were changed from Fibrofolliculoma, HP:0030436; lipomatosis, MONDO:0006574; renal cell carcinoma, MONDO:0005086 to Birt-Hogg-Dube syndrome 2, MIM# 620459 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1071 | AQP4 |
Lucy Spencer gene: AQP4 was added gene: AQP4 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: AQP4 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: AQP4 were set to 37143309 Phenotypes for gene: AQP4 were set to ?Megalencephalic leukoencephalopathy with subcortical cysts 4, remitting MIM#620448 Review for gene: AQP4 was set to AMBER Added comment: PMID: 37143309 Cohort of patients with an MRI based diagnosis of megalencephalic leukoencephalopathy with subcortical cysts (MLC). Missense variant in AQP4 seen homozygous in 2 siblings and het in the parents. Patients had macrocephaly, developmental delay, hypotonia, epilepsy, and cognitive deficit. Western blots on generated MDCK cell lines showed no detectable expression of AQP4 protein from the cells with the patients variant. Immunofluorescence also showed no membrane expression. Overexpression studies in HEK293T cells showed WT was seen as mainly monomers or dimers where as variant protein formed large aggregates- likely due to the saturation of protein degradation pathways because of the overexpression. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1071 | GPRC5B |
Lucy Spencer gene: GPRC5B was added gene: GPRC5B was added to Mendeliome. Sources: Literature Mode of inheritance for gene: GPRC5B was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: GPRC5B were set to 37143309 Phenotypes for gene: GPRC5B were set to Megalencephalic leukoencephalopathy with subcortical cysts 3 620447 Review for gene: GPRC5B was set to GREEN Added comment: PMID: 37143309 Cohort of 5 patients with an MRI based diagnosis of megalencephalic leukoencephalopathy with subcortical cysts (MLC). 3 unrelated patients had variants in GPRC5B, 2 have the same inframe dup Ile175dup and the third has an in frame dup of Ala177. All 3 were de novo and unaffected siblings did not have the variants. All patients have macrocephaly, delayed motor development, seizures, all had varying degrees of cognitive deficits. 2 also had spasticity, ataxia and dystonia. MRI showed MLC, abnormal and swollen cerebral white matter. Patient cell lines showed reduced regulatory volume decrease, and western blot showed a strong increase in GRPC5B levels in patient lymphoblasts. Together, these findings indicate disturbed volume regulation in lymphoblasts from patients with GPRC5B variants, potentially due to increased GPRC5B levels. Transfected cells caused increased volume-regulated anion channel activity. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1062 | STAT4 | Melanie Marty edited their review of gene: STAT4: Changed phenotypes: Disabling pansclerotic morphea, inflammatory disorder, poor wound healing, fibrosis, cytopenias, hypogammaglobulinemia, squamous-cell carcinoma | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1049 | DUSP7 |
Sangavi Sivagnanasundram gene: DUSP7 was added gene: DUSP7 was added to Mendeliome. Sources: Other Mode of inheritance for gene: DUSP7 was set to Unknown Publications for gene: DUSP7 were set to https://doi.org/10.1155/2023/4348290 Phenotypes for gene: DUSP7 were set to Acute Myeloid Leukemia (AML) Review for gene: DUSP7 was set to RED Added comment: New gene with an association in AML prognosis. Gao (2023) - Recruitment from three public AML cohorts - GSE71014, TARGET-AML, and TCGA-AML. The study results suggest that with an DUSP7 may affect AML progression in individuals by affecting the recruitment of local immune cells. Sources: Other |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1046 | DHX9 | Zornitza Stark Added comment: Comment when marking as ready: LoF variants caused mild NDD phenotypes and nuclear localization signal (NLS) missense variants caused severe NDD. CMT2-associated missense variants caused aberrant nucleolar DHX9 accumulation, a phenomenon previously associated with cellular stress. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1033 | MAP3K14 | Zornitza Stark Phenotypes for gene: MAP3K14 were changed from NIK deficiency; Poor T cell proliferation to antigen; Low B-cell numbers; Low NK number and function; recurrent bacterial/viral/ cryptosporidium infections; hypogammaglobulinaemia; decreased immunoglobulin levels to Immunodeficiency 112, MIM# 620449; NIK deficiency; Poor T cell proliferation to antigen; Low B-cell numbers; Low NK number and function; recurrent bacterial/viral/ cryptosporidium infections; hypogammaglobulinaemia; decreased immunoglobulin levels | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1032 | MAP3K14 | Zornitza Stark edited their review of gene: MAP3K14: Changed phenotypes: Immunodeficiency 112, MIM# 620449, NIK deficiency, Poor T cell proliferation to antigen, Low B-cell numbers, Low NK number and function, recurrent bacterial/viral/ cryptosporidium infections, hypogammaglobulinaemia, decreased immunoglobulin levels | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1007 | KDM2A |
Chirag Patel gene: KDM2A was added gene: KDM2A was added to Mendeliome. Sources: Other Mode of inheritance for gene: KDM2A was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Phenotypes for gene: KDM2A were set to Neurodevelopmental disorder Review for gene: KDM2A was set to GREEN gene: KDM2A was marked as current diagnostic Added comment: ESHG 2023: 14 patients with de novo HTZ variants in KDM2A (5 x truncating, 9 x missense) Presentation with DD, ID (mild), seizures, growth retardation, and dysmorphism. Functional studies: -patient blood showed aberrant genome wide methylation profile - potential episignature -HEK293T cells showed altered subcellular localisation of KDM2A -Drosophila models showed variants caused neurotoxicity Sources: Other |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1003 | INTS13 |
Chirag Patel gene: INTS13 was added gene: INTS13 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: INTS13 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: INTS13 were set to PMID: 36229431 Phenotypes for gene: INTS13 were set to Oral-facial-digital syndrome Review for gene: INTS13 was set to GREEN gene: INTS13 was marked as current diagnostic Added comment: 2 families with 4 affected individuals with Oral-facial-digital (OFD) phenotype. Homozygosity mapping and WES found 2 homozygous variants in INTS13 gene. This is a subunit of the Integrator complex, which associates with RNA Polymerase II and cleaves nascent RNA to modulate gene expression. Variants segregated with disease. Depletion of INTS13 disrupts ciliogenesis in human cultured cells and causes dysregulation of a broad collection of ciliary genes. Knockdown in Xenopus embryos leads to motile cilia anomalies. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.996 | RIPK3 |
Zornitza Stark gene: RIPK3 was added gene: RIPK3 was added to Mendeliome. Sources: Expert Review Mode of inheritance for gene: RIPK3 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: RIPK3 were set to 37083451 Phenotypes for gene: RIPK3 were set to Hereditary susceptibility to infections, MONDO:0015979, RIPK3-related; Recurrent HSV encephalitis Review for gene: RIPK3 was set to AMBER Added comment: Single female patient with independent episodes of HSE at 6 and 17 months of age and with autoimmune encephalitis 1 month after the second episode of HSE with two heterozygous mutations of RIPK3 predicted to be loss of function (pLOF): p. Arg422* (c.1264 C > T, MAF 0.001568, CADD 35) and p. Pro493fs9* (c.1475 C > CC, MAF 0.002611, CADD 24.2). Extensive supportive functional data including RIPK3 knockout human pluripotent stem cell–derived cortical neurons. Sources: Expert Review |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.992 | ANO1 | Zornitza Stark edited their review of gene: ANO1: Added comment: PMID 37253099: screening analysis of Moyamoya disease (MMD) cohort revealed 8 individuals with variants in the ANO1 gene. Two families had the same rare variant p.Met658Val. The ANO1 rare variants were assessed using patch-clamp recordings, and the majority of variants, including ANO1 p.Met658Val, displayed increased sensitivity to intracellular Ca2+. Patients harboring these gain-of-function ANO1 variants had classic features of MMD, but also had aneurysm, stenosis, and/or occlusion in the posterior circulation. Amber rating due to somewhat conflicting segregation and functional data presented.; Changed publications: 37253099; Changed phenotypes: Intestinal dysmotility syndrome, MIM# 620045, Moyamoya disease, MONDO:0016820, ANO1 related | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.989 | NAA60 |
Chirag Patel gene: NAA60 was added gene: NAA60 was added to Mendeliome. Sources: Other Mode of inheritance for gene: NAA60 was set to BIALLELIC, autosomal or pseudoautosomal Phenotypes for gene: NAA60 were set to Basal ganglia calcification Review for gene: NAA60 was set to GREEN gene: NAA60 was marked as current diagnostic Added comment: ESHG 2023: 10 individuals from 7 families with biallelic variants in NAA60 (missense and framshift). All with primary brain calcification - 4/10 childhood onset (DD, ID), 6/10 adult onset (cerebellar and pyramidal dysfunction, dystonia, parkinsonism, cognitive impairment, psychiatric manifestations). NAA60 catalyses N-terminal acetylation of transmembrane proteins and localises to Golgi apparatus. In vitro assay of variants showed reduced capacity of Nt acetylation. Fibroblast studies showed significantly reduced levels of phosphate importer (SLC20A2). Loss of function variants in SLC20A2 (~50% of PFBC cases) lead to increased extracellular phosphate (which is thought to lead to calcium deposits in brain). Sources: Other |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.978 | DENND5B |
Chirag Patel gene: DENND5B was added gene: DENND5B was added to Mendeliome. Sources: Other Mode of inheritance for gene: DENND5B was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Phenotypes for gene: DENND5B were set to Neurodevelopmental disorder with white matter anomalies Review for gene: DENND5B was set to GREEN gene: DENND5B was marked as current diagnostic Added comment: ESHG 2023: 7 patients/7 families with de novo DENND5B variants (6 missense, 1 splice) DD/ID (mod/profound)(7/7), white matter anomalies (6/7) hypotonia, epilepsy (3/7) DENND5B acts as: -GEF for activation of RAB proteins which are involved in membrane trafficking and neurotransmitter release -regulator of lipid absorption and homeostasis Functional studies showed loss of expression of DENND5B in fibroblasts, abnormal vesicle trafficking, and impaired lipid uptake and intracellular distribution Sources: Other |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.965 | SART3 |
Daniel Flanagan gene: SART3 was added gene: SART3 was added to Mendeliome. Sources: Expert list Mode of inheritance for gene: SART3 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: SART3 were set to PMID: 37296101 Phenotypes for gene: SART3 were set to Neurodevelopmental disorder (MONDO#0700092), SART3-related; 46,XY disorder of sex development (MONDO:0020040), SART3-related Review for gene: SART3 was set to GREEN Added comment: Nine individuals from six families presenting with intellectual disability, global developmental delay, a subset of brain anomalies, together with gonadal dysgenesis in 46,XY individuals. Additionally, two individuals had seizures and two had epileptiform activity reported on EEG. Human induced pluripotent stem cells carrying patient variants in SART3 show disruption to multiple signalling pathways, upregulation of spliceosome components and demonstrate aberrant gonadal and neuronal differentiation in vitro. Sources: Expert list |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.957 | ERI1 |
Elena Savva gene: ERI1 was added gene: ERI1 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: ERI1 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: ERI1 were set to 37352860 Phenotypes for gene: ERI1 were set to Spondyloepimetaphyseal dysplasia (MONDO#0100510), ERI1-related, Intellectual disability (MONDO#0001071), ERI1-related Review for gene: ERI1 was set to GREEN Added comment: PMID: 37352860 - 8 individuals from 7 unrelated families - Patients with biallelic missense show a MORE severe spondyloepimetaphyseal dysplasia, syndactyly, brachydactyly/clinodactyly/camptodactyly - Patients with biallelic null/whole gene deletion had mild ID and digit anomalies including brachydactyly/clinodactyly/camptodactyly - Patient chet for a missense and PTC variant has a blended phenotype with short stature, syndactyly, brachydactyly/clinodactyly/camptodactyly, mild ID and failure to thrive - Missense variants were functionally shown to not be able to rescue 5.8S rRNA processing in KO HeLa cells - K/O mice had neonatal lethality with growth defects, brachydactyly. Skeletal-specific K/O had mild platyspondyly, had more in keeping with patients with null variants than missense More severe phenotype hypothesised due to "exonuclease-dead proteins may compete for the target RNA molecules with other exonucleases that have functional redundancy with ERI1, staying bound to those RNA molecules" Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.927 | NFATC1 |
Zornitza Stark gene: NFATC1 was added gene: NFATC1 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: NFATC1 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: NFATC1 were set to 37249233 Phenotypes for gene: NFATC1 were set to Inborn error of immunity, MONDO:0003778, NFATC1-related; Combined Immune deficiency Review for gene: NFATC1 was set to AMBER Added comment: 3 individuals from a multigenerational consanguineous pedigree with early-onset sinopulmonary infections and bronchiectasis, recurrent viral (warts) and bacterial (folliculitis and abscesses) skin infections, hypogammaglobulinemia, lower CD4+/CD8+ T-cell ratio and lower recent thymic emigrants compared with the age-matched controls. Lymphocyte proliferation responses to PHA and CD3/CD28 stimulations were defective. Single pedigree with supportive functional studies. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.915 | MOS |
Melanie Marty gene: MOS was added gene: MOS was added to Mendeliome. Sources: Literature Mode of inheritance for gene: MOS was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: MOS were set to PMID: 34779126; PMID: 34997960; PMID: 36403623; PMID: 35670744 Phenotypes for gene: MOS were set to Early embryonic arrest and fragmentation; infertility Review for gene: MOS was set to GREEN Added comment: PMID: 34779126: 3 x females with infertility with biallelic MOS variants identified. Using oocyte-specific Erk1/2 knockout mice, they verified that MOS-ERK signal pathway inactivation in oocytes caused early embryonic arrest and fragmentation. PMID: 34997960: 2 x females with biallelic MOS variants. Functional studies showed a reduction of protein for two of these variants (missense and frameshift). Functional studies also showed these variants reduced the ability of MOS to phosphorylate its downstream target, extracellular signal-regulated kinase 1/2. PMID: 35670744 1 x additional family (twins) with infertility and abnormal oocyte morphology with large first polar body. Functional studies showed the MOS variants could not activate MEK1/2 and ERK1/2 in oocytes and HEK293 cells. In addition, functional studies also showed when compared with wild-type MOS, the MOS variants decreased the MOS protein level and attenuated the binding capacity with MEK1. PMID: 36403623 1 x female with primary infertility, patient’s oocytes had a large polar body and poor embryonic development, hom missense variant in MOS identified. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.868 | POLD3 |
Bryony Thompson gene: POLD3 was added gene: POLD3 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: POLD3 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: POLD3 were set to 37030525; 36395985; 27524497 Phenotypes for gene: POLD3 were set to Severe combined immunodeficiency MONDO:0015974 Review for gene: POLD3 was set to AMBER Added comment: Homozygous missense variant (NM_006591.3; p.Ile10Thr) identified in a single Lebanese patient, the product of a consanguineous family, presenting with a syndromic severe combined immunodeficiency with neurodevelopmental delay and hearing loss. POLD3 as well as POLD1 and POLD2 expression was abolished in the patient's cells. Null mouse models are embryonic lethal and demonstrate Pold3 is essential for DNA replication in murine B cells. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.848 | NAF1 |
Bryony Thompson gene: NAF1 was added gene: NAF1 was added to Mendeliome. Sources: Expert list Mode of inheritance for gene: NAF1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: NAF1 were set to 27510903 Phenotypes for gene: NAF1 were set to Pulmonary fibrosis and/or bone marrow failure, telomere-related MONDO:0000148 Review for gene: NAF1 was set to GREEN Added comment: At least 3 probands/families with telomere-related pulmonary fibrosis and a supporting mouse model PMID: 27510903 - 5 individuals from 2 unrelated families with pulmonary fibrosis-emphysema and extrapulmonary manifestations including myelodysplastic syndrome and liver disease, with LoF variants. Truncated NAF1 was detected in cells derived from patients, and, in cells in which a frameshift mutation was introduced by genome editing telomerase RNA levels were reduced. Shortened telomere length also segregated with the variants. A Naf1+/- mouse model had reduced telomerase RNA levels ClinVar - 1 nonsense and 2 splice site variants (ID: 2443185, 1338525, 2443184) called LP by the Genetic Services Laboratory, University of Chicago but no clinical details were provided - SCV002547372.1 - Garcia Pulmonary Genetics Research Laboratory, Columbia University Irving Medical Center - at least one individual with pulmonary fibrosis and leukocyte telomere length (by qPCR) less than 10th percentile age-adjusted Sources: Expert list |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.776 | CEP162 |
Paul De Fazio gene: CEP162 was added gene: CEP162 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: CEP162 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: CEP162 were set to 36862503 Phenotypes for gene: CEP162 were set to Retinitis pigmentosa MONDO:0019200, CEP162-related Penetrance for gene: CEP162 were set to unknown Review for gene: CEP162 was set to AMBER gene: CEP162 was marked as current diagnostic Added comment: 2 patients from reportedly unrelated consanguineous Moroccan families with the same homozygous frameshift variant reported with late-onset retinal degeneration. Patient 1 was diagnosed with RP at age 60, patient 2 at age 69. Both reported loss of visual acuity in the years prior. Immunoblotting of cell lysates from patient fibroblasts showed that some mutant transcript escaped NMD. Functional testing showed that the truncated protein could bind microtubules but was unable to associate with centrioles or its interaction partner CEP290. Patient fibroblasts were shown to have delayed ciliation. Mutant protein was unable to rescue loss of cilia in CEP162 knockdown mice supporting that the mutant protein does not retain any ciliary function, however additional data supported that the truncated protein was able to bind microtubules and function normally during neuroretinal development. The authors suggest this likely underlies the late-onset RP in both patients. Rated Amber because only a single variant has been reported in patients who may or may not be related (same ethnic background). Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.774 | SNAPC4 |
Ee Ming Wong changed review comment from: - Ten individuals from eight families with neurodevelopmental disorder found to be compound heterozygous for variants in SNAPC4 - Identified variants included 6x missense, 1x nonsense, 1x frameshift and 6x splice - Depletion of SNAPC4 levels in HeLa cell lines via genomic editing led to decreased snRNA expression and global dysregulation of alternative splicing, similarly observed in patient fibroblasts Sources: Literature; to: - Ten individuals from eight families with neurodevelopmental disorder found to be biallelic for variants in SNAPC4 - Identified variants included 6x missense, 1x nonsense, 1x frameshift and 6x splice - Depletion of SNAPC4 levels in HeLa cell lines via genomic editing led to decreased snRNA expression and global dysregulation of alternative splicing, similarly observed in patient fibroblasts Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.774 | DOCK11 |
Lucy Spencer gene: DOCK11 was added gene: DOCK11 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: DOCK11 was set to X-LINKED: hemizygous mutation in males, biallelic mutations in females Publications for gene: DOCK11 were set to 36952639 Phenotypes for gene: DOCK11 were set to autoimmune disease MONDO:0007179, DOCK11-related Review for gene: DOCK11 was set to GREEN Added comment: 8 male patients from 7 unrelated families all with hemizygous DOCK11 missense variants. 6 mothers were tested and found to carry the same missense. Early onset autoimmuniy with cytopenia, systemic lupus erythematosus, and skin and digestive manifestations. Patients platelets had abnormal morphology and spreading as well as impaired CDC42 activity. In vitro activated T cells and B lymphoblastoid cell lines (B-LCL) of patients exhibited aberrant protrusions and abnormal migration speed in confined channels concomitant with altered actin polymerization during migration. A DOCK11 knock-down recapitulated these abnormal cellular phenotypes in monocytes-derived dendritic cells (MDDC) and primary activated T cells from healthy controls. 6 of the variants are either absent or have only 1 het in gnomad v2, but one of them has 2 hemis and 1 het. The patient with this variant R1885C does seem to be more mild. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.774 | SNAPC4 |
Ee Ming Wong gene: SNAPC4 was added gene: SNAPC4 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: SNAPC4 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: SNAPC4 were set to 36965478 Phenotypes for gene: SNAPC4 were set to Neurodevelopmental disorder (MONDO#0700092), SNAPC4-related Review for gene: SNAPC4 was set to GREEN gene: SNAPC4 was marked as current diagnostic Added comment: - Ten individuals from eight families with neurodevelopmental disorder found to be compound heterozygous for variants in SNAPC4 - Identified variants included 6x missense, 1x nonsense, 1x frameshift and 6x splice - Depletion of SNAPC4 levels in HeLa cell lines via genomic editing led to decreased snRNA expression and global dysregulation of alternative splicing, similarly observed in patient fibroblasts Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.763 | PPCDC |
Bryony Thompson gene: PPCDC was added gene: PPCDC was added to Mendeliome. Sources: Literature Mode of inheritance for gene: PPCDC was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: PPCDC were set to 36564894 Phenotypes for gene: PPCDC were set to dilated cardiomyopathy MONDO:0005021 Review for gene: PPCDC was set to RED Added comment: Single family reported with two siblings with a fatal cardiac phenotype including dilated cardiomyopathy with biallelic variants p.Thr53Pro and p.Ala95Val. Patient-derived fibroblasts showed an absence of PPCDC protein, and nearly 50% reductions in CoA levels. The cells showed clear energy deficiency problems, with defects in mitochondrial respiration, and mostly glycolytic ATP synthesis. Functional studies performed in yeast suggest these mutations to be functionally relevant. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.752 | PRDM10 |
Achchuthan Shanmugasundram gene: PRDM10 was added gene: PRDM10 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: PRDM10 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: PRDM10 were set to 36440963 Phenotypes for gene: PRDM10 were set to Fibrofolliculoma, HP:0030436; lipomatosis, MONDO:0006574; renal cell carcinoma, MONDO:0005086 Review for gene: PRDM10 was set to RED Added comment: PMID:36440963 reported a family presenting with skin and mucosal lesions, extensive lipomatosis and renal cell carcinomas. The proband was initially diagnosed with Birt-Hogg-Dubé syndrome (BHD, MIM #135150) based on the presence of fibrofolliculomas, but no pathogenic germline variant was detected in FLCN, the gene associated with BHD. A heterozygous missense variant (p.Cys677Tyr) was identified, which co-segregated with the phenotype in the family. Functional studies show that Cys677Tyr loses affinity for a regulatory binding motif in the FLCN promoter, abrogating cellular FLCN mRNA and protein levels. Overexpressing inducible PRDM10Cys677Tyr in renal epithelial cells altered the transcription of multiple genes, showing overlap but also differences with the effects of knocking out FLCN. This gene has not yet been associated with phenotypes either in OMIM or in Gene2Phenotype. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.733 | TNFRSF9 | Zornitza Stark Phenotypes for gene: TNFRSF9 were changed from EBV lymphoproliferation; B-cell lymphoma; Chronic active EBV infection to Immunodeficiency 109 with lymphoproliferation, MIM# 620282; EBV lymphoproliferation; B-cell lymphoma; Chronic active EBV infection | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.732 | TNFRSF9 | Zornitza Stark edited their review of gene: TNFRSF9: Changed phenotypes: Immunodeficiency 109 with lymphoproliferation, MIM# 620282, EBV lymphoproliferation, B-cell lymphoma, Chronic active EBV infection | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.719 | DPYSL2 |
Zornitza Stark gene: DPYSL2 was added gene: DPYSL2 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: DPYSL2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: DPYSL2 were set to 27249678; 35861646 Phenotypes for gene: DPYSL2 were set to intellectual disability, MONDO:0001071, DPYSL2-related Review for gene: DPYSL2 was set to AMBER Added comment: Two unrelated cases with monoallelic variants in DPYSL2/ CRMP2, supported by functional studies. However, the evidence is not sufficient for green rating as there are variants reported in other (but different) genes in the two patients. PMID:35861646 reported two cases identified with heterozygous variants (patient1: c.1693C>T (p.Arg565Cys); patient 2: c.42C>A (p.Ser14Arg). These patients had overlapping phenotypes including dysmorphic features, severe global developmental delay and hypoplasia of the corpus callosum. In addition, patient 2 was bed-ridden and could not roll out and had a history of myoclonic seizures and status epilepticus. It should be noted that patient 1 is compound heterozygous for 2 missense variants in the EFCAB5 gene and was hemizygous for a maternally inherited missense variant in the GPKOW gene and patient 2 had 1 de novo missense variant in the COBLL1 gene and was compound heterozygous for 2 missense variants in the POTEF gene. The severity of the phenotypes between the two cases differs significantly and the additional variants may have possibly contributed to this phenotype. Brain-specific Crmp2 knockout mice display neuronal development deficits and behavioural impairments associated with hypoplasia of the corpus callosum. In addition, functional studies performed in zebrafish and cell lines that the CRMP2 variants lead to the loss-of-function of CRMP2 protein and can cause intellectual disability. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.717 | RBSN |
Zornitza Stark gene: RBSN was added gene: RBSN was added to Mendeliome. Sources: Literature Mode of inheritance for gene: RBSN was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: RBSN were set to 25233840; 29784638; 35652444 Phenotypes for gene: RBSN were set to intellectual disability, MONDO:0001071, RBSN-related Review for gene: RBSN was set to GREEN Added comment: Four unrelated families reported, consistent feature is ID. PMID:25233840 reported a 6.5 year old female patient with a homozygous missense variant c.1273G > A (p.Gly425Arg) and her clinical presentation included intractable seizures, developmental delay, microcephaly, dysostosis, osteopenia, craniofacial dysmorphism, macrocytosis and megaloblastoid erythropoiesis. PMID:29784638 reported three siblings with homozygous variant c.289G>C (p.Gly97Arg) in RBSN. The proband presented global developmental delay, had complete 46,XY male-to-female sex reversal and died at age 20 months after multiple infections. The other 2 affected siblings underwent unrelated-donor bone marrow or stem cell transplantation at 8 and 6.5 months of age, respectively. Both have severe intellectual disability and are nonambulatory and nonverbal. PMID:35652444 reported two unrelated families (three siblings from a family of Iranian descent identified with homozygous variant c.547G>A (p.Gly183Arg) and four members from a family of indigenous Cree descent identified with homozygous variant c.538C>G (p.Arg180Gly)) with overlapping phenotypes including developmental delay, intellectual disability, distal motor axonal neuropathy and facial dysmorphism. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.697 | SLC25A36 |
Krithika Murali gene: SLC25A36 was added gene: SLC25A36 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: SLC25A36 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: SLC25A36 were set to 34971397; 34576089; 31036718 Phenotypes for gene: SLC25A36 were set to Hyperinsulinemic hypoglycemia, familial, 8 - MIM#620211 Review for gene: SLC25A36 was set to GREEN Added comment: Solute carrier family 25 members 33 (SLC25A33) and 36 (SLC25A36) are the only known mitochondrial pyrimidine nucleotide carriers in humans PMID: 34971397 Sharoor et al 2022 report 2 siblings with hyperinsulinism, hypoglycemia and hyperammonemia from early infancy with homozygous SLC25A36 c.284 + 3 A > T variant identified through WES. Functional studies support LoF. PMID: 34576089 report a 12-year-old patient with hypothyroidism, hyperinsulinism, hyperammonemia, chronical obstipation, short stature, along with language and general developmental delay. WES identified SLC25A36 gene homozygous c.803dupT, p.Ser269llefs*35 variant. Functional analysis of mutant SLC25A36 protein in proteoliposomes showed a virtually abolished transport activity. Immunoblotting results suggest that the mutant SLC25A36 protein in the patient undergoes fast degradation. Supplementation with uridine lead to some improvement in clinical course. PMID: 31036718 deficiencies in SLC25A36 in mouse embryonic stem cells have been associated with mtDNA depletion as well as mitochondrial dysfunction Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.689 | LGR4 |
Elena Savva changed review comment from: PMID: 36538378 - hom canonical splice variant in an infant with failure to thrive, severe salt-wasting crises associated with isolated hypoaldosteronism, nail anomalies, short stature, and deafness. Multiple affected siblings but all deceased, two normal siblings found to be het or wildtype. Functional studies proved INFRAME exon 6 skipping, patients cell shad minimal protein. Conditional K/O mouse model showed reduced expression of Wnt target genes, adrenal hypoplasia and aberrant zonal differentiation gnomAD: no hom PTCs PMID: 32493844 - 6 patients with delayed puberty, supported by functional studies on mice displaying impaired Wnt/β-catenin signaling. Recurring missense p.G363C present in 4/6 families, but super common in the population (67 homozygotes).; to: PMID: 36538378 - hom canonical splice variant in an infant with failure to thrive, severe salt-wasting crises associated with isolated hypoaldosteronism, nail anomalies, short stature, and deafness. Multiple affected siblings but all deceased, two normal siblings found to be het or wildtype. Functional studies proved INFRAME exon 6 skipping, patients cell shad minimal protein. Conditional K/O mouse model showed reduced expression of Wnt target genes, adrenal hypoplasia and aberrant zonal differentiation gnomAD: no hom PTCs PMID: 32493844 - 6 patients with delayed puberty, supported by functional studies on mice displaying impaired Wnt/β-catenin signaling. Recurring missense p.G363C present in 4/6 families, but super common in the population (67 homozygotes). |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.689 | LGR4 |
Elena Savva edited their review of gene: LGR4: Added comment: PMID: 36538378 - hom canonical splice variant in an infant with failure to thrive, severe salt-wasting crises associated with isolated hypoaldosteronism, nail anomalies, short stature, and deafness. Multiple affected siblings but all deceased, two normal siblings found to be het or wildtype. Functional studies proved INFRAME exon 6 skipping, patients cell shad minimal protein. Conditional K/O mouse model showed reduced expression of Wnt target genes, adrenal hypoplasia and aberrant zonal differentiation gnomAD: no hom PTCs PMID: 32493844 - 6 patients with delayed puberty, supported by functional studies on mice displaying impaired Wnt/β-catenin signaling. Recurring missense p.G363C present in 4/6 families, but super common in the population (67 homozygotes).; Changed publications: PMID: 32493844, 36538378; Changed phenotypes: {Bone mineral density, low, susceptibility to} MIM#615311; Changed mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.684 | ELOC |
Achchuthan Shanmugasundram gene: ELOC was added gene: ELOC was added to Mendeliome. Sources: Literature Mode of inheritance for gene: ELOC was set to Unknown Publications for gene: ELOC were set to 35323939 Phenotypes for gene: ELOC were set to von Hippel-Lindau disease, MONDO:0008667; renal cell carcinoma, MONDO:0005086; retinal hemangioblastoma, MONDO:0003343 Review for gene: ELOC was set to RED Added comment: Comment on gene classification: This gene should be rated red as there is only one case with germline variant found so far. A female patient was identified with a germline de novo missense variant in ELOC gene (c.236A>G/ p.Tyr79Cys) and satisfied the clinical diagnostic criteria for von Hippel-Lindau (VHL) disease. The patient had left retinal haemangioblastomas, renal cell carcinomas, cyst of the right kidney, spinal haemangioblastoma, a haemangioblastoma at the cervicomedullary junction and Henoch-Schonlein purpura (PMID:35323939). This is the only germline variant detected in ELOC gene and was associated with VHL so far. However, ~20 somatic ELOC variants have been reported to be associated with renal cell carcinomas so far. This gene has not yet been associated with relevant phenotypes in OMIM or Gene2Phenotype. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.665 | WNT11 |
Achchuthan Shanmugasundram gene: WNT11 was added gene: WNT11 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: WNT11 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown Publications for gene: WNT11 were set to 34875064 Phenotypes for gene: WNT11 were set to osteoporosis, MONDO:0005298; osteoarthritis, MONDO:0005178; recurrent fractures Review for gene: WNT11 was set to GREEN Added comment: Comment on gene classification: The rating of this gene can be added as green as this gene has been implicated in early-onset osteoporosis from three unrelated cases and was supported by evidence from functional studies. All three patients harboured heterozygous variants in WNT11 gene. Three unrelated cases are reported in PMID: 34875064. A four year-old boy harbouring de novo heterozygous loss-of-function variant c.677_678dupGG (p.Leu227Glyfs*22) was reported with low BMD, osteopenia and several fractures. A 51 year-old woman and her 69 year-old mother were identified with a heterozygous missense variant c.217G>A (p.Ala73Thr). The woman was reported with bone fragility, several fractures, osteoarthritis and osteoporosis, while her mother also had several osteoporotic fractures. A 61 year-old woman that was reported with lumbar spine osteoarthritis had several fractures since 55 years of age was identified with a heterozygous missense variant c.865G>A (p.Val289Met). This was also supported by results from functional studies, where cell lines with the loss-of-function variant generated by CRISPR-Cas9 showed reduced cell proliferation and osteoblast differentiation in comparison to wild-type. The expression of genes in the Wnt canonical and non-canonical pathways was inhibited in these mutant cells. This gene has not yet been reported with any phenotypes either in OMIM or in G2P. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.649 | RRAGD |
Hazel Phillimore changed review comment from: PMID: 34607910; Schlingmann, KP. et al. (2021) J Am Soc Nephrol. 32(11):2885-2899. Five missense variants in RRAGD identified in eight children (some early infant onset) from unrelated families. The variants were recurrent or affecting the same amino acid, i.e., p.S76L, S76W, p.T97P, p.P119L, p.P119R and p.I221K note: these are absent in gnomAD v2.1.1, and are very highly conserved residues. All variants are located in the N-terminal G-domain and affect sequence motifs involved in nucleotide binding The children had a tubulopathy characterised by hypomagnesemia, hypokalaemia, salt wasting, and nephrocalcinosis, and six had dilated cardiomyopathy. Most occurred de novo. Two were familial. One family with two affected siblings showed low level mosaicism in the mother. In vitro studies using transfected HEK293 cells showed increased binding to RPTOR and MTOR. Sources: Literature; to: PMID: 34607910; Schlingmann, KP. et al. (2021) J Am Soc Nephrol. 32(11):2885-2899. Six missense variants in RRAGD identified in eight children (some early infant onset) from unrelated families. The variants were recurrent or affecting the same amino acid, i.e., p.S76L, S76W, p.T97P, p.P119L, p.P119R and p.I221K note: these are absent in gnomAD v2.1.1, and are very highly conserved residues. All variants are located in the N-terminal G-domain and affect sequence motifs involved in nucleotide binding The children had a tubulopathy characterised by hypomagnesemia, hypokalaemia, salt wasting, and nephrocalcinosis, and six had dilated cardiomyopathy. Most occurred de novo. Two were familial. One family with two affected siblings showed low level mosaicism in the mother. In vitro studies using transfected HEK293 cells showed increased binding to RPTOR and MTOR. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.649 | RRAGD |
Hazel Phillimore gene: RRAGD was added gene: RRAGD was added to Mendeliome. Sources: Literature Mode of inheritance for gene: RRAGD was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: RRAGD were set to PMID: 34607910 Phenotypes for gene: RRAGD were set to Kidney tubulopathy; dilated cardiomyopathy; hypomagnesaemia; renal salt-wasting; nephrocalcinosis Review for gene: RRAGD was set to GREEN Added comment: PMID: 34607910; Schlingmann, KP. et al. (2021) J Am Soc Nephrol. 32(11):2885-2899. Five missense variants in RRAGD identified in eight children (some early infant onset) from unrelated families. The variants were recurrent or affecting the same amino acid, i.e., p.S76L, S76W, p.T97P, p.P119L, p.P119R and p.I221K note: these are absent in gnomAD v2.1.1, and are very highly conserved residues. All variants are located in the N-terminal G-domain and affect sequence motifs involved in nucleotide binding The children had a tubulopathy characterised by hypomagnesemia, hypokalaemia, salt wasting, and nephrocalcinosis, and six had dilated cardiomyopathy. Most occurred de novo. Two were familial. One family with two affected siblings showed low level mosaicism in the mother. In vitro studies using transfected HEK293 cells showed increased binding to RPTOR and MTOR. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.630 | TRU-TCA1-1 |
Paul De Fazio gene: TRU-TCA1-1 was added gene: TRU-TCA1-1 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: TRU-TCA1-1 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: TRU-TCA1-1 were set to 26854926; 34956927 Phenotypes for gene: TRU-TCA1-1 were set to Hyperthyroidism MONDO:0004425 Review for gene: TRU-TCA1-1 was set to AMBER gene: TRU-TCA1-1 was marked as current diagnostic Added comment: PMID 26854926: male 8 year old proband investigated for abdominal pain, fatigue, muscle weakness, and thyroid dysfunction (raised T4, normal T3, raised reverse T3) suggestive of impaired deiodinase activity in combination with low plasma selenium levels. Homozygosity mapping led to identification of a a single nucleotide change, C65G, in TRU-TCA1-1, a tRNA in the selenocysteine incorporation pathway. This mutation resulted in reduction in expression of stress-related selenoproteins. A methylribosylation defect at uridine 34 of mutant tRNA observed in patient cells was restored by cellular complementation with normal tRNA. PMID 34956927: a 10 year old originally investigated for Hashimoto's disease was found to be homozygous for the same C65G variant identified in the previous paper, inherited from the father in what was concluded to be paternal isodisomy. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.629 | HTR2C |
Zornitza Stark gene: HTR2C was added gene: HTR2C was added to Mendeliome. Sources: Literature Mode of inheritance for gene: HTR2C was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: HTR2C were set to 36536256 Phenotypes for gene: HTR2C were set to Obesity disorder, MONDO:0011122, HTR2C-related Review for gene: HTR2C was set to GREEN Added comment: Exome sequencing of 2,548 people with severe obesity and 1,117 control individuals without obesity identified 13 rare variants in the gene encoding 5-HT2CR (HTR2C) in 19 unrelated people (3 males and 16 females). Eleven variants caused a loss of function in HEK293 cells. All people who carried variants had hyperphagia and some degree of maladaptive behavior. Obesity was severe, childhood-onset. Knock-in male mice harboring a human loss-of-function HTR2C variant developed obesity and reduced social exploratory behavior; female mice heterozygous for the same variant showed similar deficits with reduced severity. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.628 | CCDC84 |
Lucy Spencer gene: CCDC84 was added gene: CCDC84 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: CCDC84 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: CCDC84 were set to 34009673 Phenotypes for gene: CCDC84 were set to Mosaic variegated aneuploidy syndrome 4 (MIM#620153) Review for gene: CCDC84 was set to AMBER Added comment: PMID: 34009673- patients with constitutional mosaic aneuploidy were found to have biallelic mutations in CENATAC(CCDC84). 2 adult siblings with mosaic aneuploidies, microcephaly, dev delay, and maculopathy. Both chet for a missense and a splice site deletion- but the paper days these both result in the creation of a novel splice site that leads to frameshifts and loss of the c-terminal 64 amino acids. Gene is shown to be part of a spliceosome. CENATAC depletion or expression of disease mutants resulted in retention of introns in ~100 genes enriched for nucleocytoplasmic transport and cell cycle regulation, and caused chromosome segregation errors. Functional analysis in CENATAC-depleted HeLa cells demonstrated chromosome congression defects and subsequent mitotic arrest, which could be fully rescued by wildtype but not mutant CENATAC. Expression of the MVA-associated mutants exacerbated the phenotype, suggesting that the mutant proteins dominantly repress the function of any residual wildtype protein. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.626 | THBS1 |
Zornitza Stark gene: THBS1 was added gene: THBS1 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: THBS1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: THBS1 were set to 36453543 Phenotypes for gene: THBS1 were set to Congenital glaucoma MONDO:0020366, THBS1-related Review for gene: THBS1 was set to GREEN Added comment: Missense alleles altering p.Arg1034, a highly evolutionarily conserved amino acid, in 3 unrelated and ethnically diverse families affected by congenital glaucoma. Thbs1R1034C-mutant mice had elevated intraocular pressure (IOP), reduced ocular fluid outflow, and retinal ganglion cell loss. Histology revealed an abundant, abnormal extracellular accumulation of THBS1 with abnormal morphology of juxtacanalicular trabecular meshwork (TM), an ocular tissue critical for aqueous fluid outflow. Functional characterization showed that the THBS1 missense alleles found in affected individuals destabilized the THBS1 C-terminus, causing protein misfolding and extracellular aggregation. Analysis using a range of amino acid substitutions at position R1034 showed that the extent of aggregation was correlated with the change in protein-folding free energy caused by variations in amino acid structure. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.624 | GET4 |
Elena Savva gene: GET4 was added gene: GET4 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: GET4 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: GET4 were set to 32395830 Phenotypes for gene: GET4 were set to ?Congenital disorder of glycosylation,, type IIy MIM#620200 Review for gene: GET4 was set to RED Added comment: PMID: 32395830 - chet patient (missense x2), functionally shown to result in downregulation of three TRC proteins in patient cell lines. - patient phenotype included ID, DD, seizures, dysmorphism and delayed bone age. - functional studies on missense themselves not performed Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.601 | TRPC5 |
Hazel Phillimore gene: TRPC5 was added gene: TRPC5 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: TRPC5 was set to X-LINKED: hemizygous mutation in males, biallelic mutations in females Publications for gene: TRPC5 were set to PMID: 36323681; 24817631; 23033978; 33504798; 28191890 Phenotypes for gene: TRPC5 were set to Intellectual disability; autistic spectrum disorder Review for gene: TRPC5 was set to AMBER Added comment: PMID: 36323681; Leitão E. et al. (2022) Nat Commun.13(1):6570: Missense variant NM_012471.2:c.523C>T, p.(Arg175Cys in three brothers with intellectual disability (ID) and autistic spectrum disorder (ASD), inherited from an asymptomatic mother and absent in the maternal grandparents. Whole cell patch clamp studies of HEK293 created by site-directed mutagenesis showed increased current of this calcium channel (constitutively opened). (This variant is absent in gnomAD v2.1.1). Also, the nonsense variant, c.965G> A, p.(Trp322*) was found in a high functioning ASD male (maternally inherited), NMD-predicted. Other papers and TRPC5 variants that were cited to associate this gene with X-linked ID and/or ASD include: PMID: 24817631; Mignon-Ravix, C. et al. (2014) Am. J.Med. Genet. A 164A: 1991–1997: A hemizygous 47-kb deletion in Xq23 including exon 1 of the TRPC5 gene. He had macrocephaly, delayed psychomotor development, speech delay, behavioural problems, and autistic features. Maternally inherited, and a family history compatible with X-linked inheritance (i.e., maternal great uncle was also affected, although not tested). In addition, PMID: 36323681; Leitão E. et al. (2022) cites papers with the variants p.(Pro667Thr), p.(Arg71Gln) and p.(Trp225*). NB. p.(Pro667Thr) is absent in gnomAD (v2.1.1), p.(Arg71Gln) is also absent (the alternative variant p.(Arg71Trp) is present once as heterozygous only). p.(Trp225*) is absent, and it should be noted that PTCs / LoF variants are very rare (pLI = 1). However, looking further into the three references, the evidence is not as clear or as accurate as was stated. The missense variant c.1999C>A, p.(Pro667Thr), was stated as de novo, but was actually maternally inherited but was still considered a candidate for severe intellectual disability (shown in the Appendix, Patient 93, with severe speech delay, autism spectrum disorder and Gilles de la Tourette). This patient also has a de novo MTF1 variant. Reference: PMID: 23033978; de Ligt, J. et al. (2012) N. Engl. J. Med. 367: 1921–1929). Missense variant (de novo): c.212G>A, p.(Arg71Gln), was found as part of the Deciphering Developmental Disorders (DDD) study and is shown in individual 164 in Supplementary Table 2 of PMID: 33504798; Martin, HC. et al. (2021) Nat. Commun.12: 627. Also displayed in DECIPHER (DDD research variant) with several phenotype traits, but ID and ASD are not specifically mentioned. Nonsense variant: c.674G>A. p.(Trp225*) was stated as de novo but was inherited (reference PMID: 28191890; Kosmicki, JA. et al. (2017) Nat. Genet. 49: 504–510. Supplement Table 7). This was a study of severe intellectual delay, developmental delay / autism. (NB. The de novo p.(Arg71Gln) variant from the DDD study is also listed (subject DDD 342 in Supplement 4 / Table 2). Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.580 | CCIN |
Chern Lim gene: CCIN was added gene: CCIN was added to Mendeliome. Sources: Literature Mode of inheritance for gene: CCIN was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: CCIN were set to 36546111; 36527329 Phenotypes for gene: CCIN were set to Teratozoospermia Review for gene: CCIN was set to GREEN gene: CCIN was marked as current diagnostic Added comment: Two papers with three unrelated patients with teratozoospermia: PMID: 36546111 - Two families reported: One with homozygous missense (fam is consanguineous) and another with compound heterozygous missense + nonsense variants, patients suffering from teratozoospermia. - Homozygous CcinH42L/H42L and compound heterozygous CcinR432W/C447* knock-in mice generated. Spermatozoa from homozygous male mice exhibited abnormalities of sperm head shape revealed by Diff-Quick staining. When mated with WT mice, both homozygous CcinH42L/H42L and compound heterozygous CcinR432W/C447* male mice were infertile, whereas the mutant female mice could generate offspring and displayed no defects in fertility. PMID: 36527329 - One consanguineous family reported: homozygous missense, with asthenoteratozoospermia. - Transfected HEK cells showed reduced CCIN protein level. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.547 | IL2RB |
Zornitza Stark changed review comment from: Five families reported. Sources: Expert list; to: Five families reported. Affected individuals present in infancy with features of both abnormal activation of certain immune signaling pathways, resulting in lymphoid proliferation, dermatitis, enteropathy, and hypergammaglobulinemia, as well as features of immunodeficiency, such as recurrent infections and increased susceptibility to viral infections, especially CMV. Laboratory studies show increased NK cells that show impaired differentiation, as well as abnormal T cell populations or responses. Some patients may die in childhood; hematopoietic bone marrow transplantation is curative. Sources: Expert list |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.538 | CHUK | Zornitza Stark edited their review of gene: CHUK: Added comment: PMID 34533979: single individual reported with homozygous missense variant in this gene and recurrent infections, skeletal abnormalities, absent secondary lymphoid structures, reduced B cell numbers, hypogammaglobulinemia, and lymphocytic infiltration of intestine. Supportive functional data.; Changed publications: 25691407, 20961246, 10195895, 10195896, 29523099, 28513979, 34533979 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.507 | GABRA3 |
Sarah Pantaleo gene: GABRA3 was added gene: GABRA3 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: GABRA3 was set to X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) Publications for gene: GABRA3 were set to PMID: 29053855 Phenotypes for gene: GABRA3 were set to Epilepsy, intellectual disability, dysmorphic features, Penetrance for gene: GABRA3 were set to Incomplete Review for gene: GABRA3 was set to GREEN Added comment: Six variants in GABRA3 encoding the alpha3-subunit of the GABA(A) receptor. Five missense variants and one micro duplication were detected in four families and two sporadic cases presenting with a range of epileptic seizure types, a varying degree of intellectual disability and developmental delay, sometimes with dysmorphic features or nystagmus. The variants co-segregated mostly but not completely with the phenotype in the families, indicating in some cases incomplete penetrance, involvement of other genes, or presence of phenocopies. Overall, males were more severely affected and there were three asymptomatic female mutation carriers compared to only one male without a clinical phenotype. Mechanism suggested - three detected missense variants are localised in the extracellular GABA-binding NH2-terminus, one in the M2-M3 linker and one in the M4 transmembrane segment of the alpha3-subunit. Functional studies in Xenopus leaves oocytes revealed a variable but significant reduction of GABA-evoked anion currents for all mutants compared to wild-type receptors. The degree of current reduction correlated partially with the phenotype. Results reveal that rare loss-of-function variants in GABRA3 increase the risk for a varying combination of epilepsy, intellectual disability/developmental delay and dysmorphic features, presenting in some pedigrees with an X-linked inheritance pattern. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.491 | KIF26A |
Chirag Patel gene: KIF26A was added gene: KIF26A was added to Mendeliome. Sources: Literature Mode of inheritance for gene: KIF26A was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: KIF26A were set to PMID: 36228617 Phenotypes for gene: KIF26A were set to Congenital brain malformations, no OMIM # Review for gene: KIF26A was set to GREEN Added comment: 5 unrelated patients with biallelic loss-of-function variants in KIF26A (found through WES), exhibiting a spectrum of congenital brain malformations (schizencephaly, corpus callosum anomalies, polymicrgyria, and ventriculomegaly). Combining mice and human iPSC-derived organoid models, they discovered that loss of KIF26A causes excitatory neuron-specific defects in radial migration, localization, dendritic and axonal growth, and apoptosis, offering a convincing explanation of the disease etiology in patients. Single-cell RNA sequencing in KIF26A knockout organoids revealed transcriptional changes in MAPK, MYC, and E2F pathways. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.459 | RPS6KB1 |
Arina Puzriakova gene: RPS6KB1 was added gene: RPS6KB1 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: RPS6KB1 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown Publications for gene: RPS6KB1 were set to 34916228 Phenotypes for gene: RPS6KB1 were set to Hypertrophic cardiomyopathy Review for gene: RPS6KB1 was set to GREEN Added comment: Jain et al. 2022 (PMID: 34916228) reported on two unrelated HCM families with the same heterozygous missense RPS6KB1 variant (p.G47W), and subsequently three further unrelated probands with HCM harbouring distinct heterozygous variants (p.Q49K, p.Y62H, respectively). Variants segregated with disease, were predicted pathogenic by silico analyses and were ultrarare or absent in population databases. Functional studies in the HL-1 (mouse cardiomyocytes) cells showed that the patient-specific RPS6KB1 mutant significantly increased cell size and activated rpS6 and ERK1/2 signalling cascades. The relationship between RPS6KB1 and cardiac hypertrophy has also been explored in feline and mice models (PMID: 15226426; 17976640) Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.437 | FOXI3 |
Paul De Fazio gene: FOXI3 was added gene: FOXI3 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: FOXI3 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown Publications for gene: FOXI3 were set to 36260083 Phenotypes for gene: FOXI3 were set to Dysostosis with predominant craniofacial involvement (MONDO:0800085) Penetrance for gene: FOXI3 were set to Incomplete Review for gene: FOXI3 was set to GREEN gene: FOXI3 was marked as current diagnostic Added comment: Ten affected individuals from 4 families reported with monoallelic variants, 2 with missense variants affecting the nuclear localisation sequence and 2 with frameshift variants. The missense variants were associated with isolated microtia with aural atresia and affected subcellular localisation of the protein, while the frameshift variants were associated with microtia and mandubular hypoplasia, suggesting dosage sensitivity. Rated green but CAUTION for incomplete penetrance. 3 of the 4 families had unaffected carriers. Family 1 in particular had 25 genotyped individuals, of which 15 were carriers, of which 5 were affected. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.388 | EXOC6B |
Bryony Thompson gene: EXOC6B was added gene: EXOC6B was added to Mendeliome. Sources: Literature Mode of inheritance for gene: EXOC6B was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: EXOC6B were set to 26669664; 30284759; 36150098 Phenotypes for gene: EXOC6B were set to Spondyloepimetaphyseal dysplasia with joint laxity MONDO:0019675 Review for gene: EXOC6B was set to GREEN Added comment: 6 affected individuals from 4 families, and supporting assays in patient cells PMID: 26669664 - 2 brothers with spondyloepimetaphyseal dysplasia (SEMD), multiple joint dislocations at birth, severe joint laxity, scoliosis, gracile metacarpals and metatarsals, delayed bone age and poorly ossified carpal and tarsal bones from a consanguineous family, with a homozygous nonsense variant [c.906T>A/p.(Tyr302*)] PMID: 30284759 - 2 sisters with dislocations of the hips and knees, long slender fingers with distal tapering, significant motor disability but normal (older sister) or low-normal intelligence (younger sister), with a homozygous in-frame deletion of exons 9-20 PMID: 36150098 - 2 unrelated probands from consanguineous families, one with a homozygous frameshift exon 20 deletion and one with a homozygous nonsense variant (c.401T>G p.Leu134Ter). Function assessment of patient fibroblast cell lines indicated abrogation of exocytosis leading to impaired primary ciliogenesis Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.385 | VPS33A |
Bryony Thompson changed review comment from: PMID: 28013294 - 13 cases homozygous for VPS33A c.1492C>T p.(Arg498Trp) from non-consanguineous Yakuti families with a Mucopolysaccharidoses-like disease (coarse facial features, skeletal abnormalities, hepatosplenomegaly, respiratory problems, intellectual disability, and excess secretion of urinary glycosaminoglycans). Lysosomal over-acidification and heparan sulphate accumulation were detected in patient-derived and VPS33A-depleted HeLa cells. PMID: 27547915 - 2 affected siblings homozygous for VPS33A p.(Arg498Trp) from a consanguineous Turkish family PMID: 31936524 - 1 homozygous case from a non-consanguineous Yakuti family PMID: 36153662 - an attenuated juvenile case with a new homozygous missense variant VPS33A c.599G>C p.(Arg200Pro). Urinary glycosaminoglycan analysis revealed increased heparan, dermatan sulphates, and hyaluronic acid and decreased abundance of VPS33A in patient-derived fibroblasts; to: Now two missense variants reported with disease in at least 15 probands/families PMID: 28013294 - 13 cases homozygous for VPS33A c.1492C>T p.(Arg498Trp) from non-consanguineous Yakuti families with a Mucopolysaccharidoses-like disease (coarse facial features, skeletal abnormalities, hepatosplenomegaly, respiratory problems, intellectual disability, and excess secretion of urinary glycosaminoglycans). Lysosomal over-acidification and heparan sulphate accumulation were detected in patient-derived and VPS33A-depleted HeLa cells. PMID: 27547915 - 2 affected siblings homozygous for VPS33A p.(Arg498Trp) from a consanguineous Turkish family PMID: 31936524 - 1 homozygous case from a non-consanguineous Yakuti family PMID: 36153662 - an attenuated juvenile case with a new homozygous missense variant VPS33A c.599G>C p.(Arg200Pro). Urinary glycosaminoglycan analysis revealed increased heparan, dermatan sulphates, and hyaluronic acid and decreased abundance of VPS33A in patient-derived fibroblasts |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.369 | DUT |
Daniel Flanagan gene: DUT was added gene: DUT was added to Mendeliome. Sources: Expert list Mode of inheritance for gene: DUT was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: DUT were set to 28073829; 35611808 Phenotypes for gene: DUT were set to Bone marrow failure and diabetes mellitus syndrome (MIM#620044) Review for gene: DUT was set to GREEN Added comment: Homozygous missense (p.(Tyr142Cys)) identified in eight affected individuals from four unrelated consanguineous families (French, Egyptian, two Libyan) with diabetes and bone marrow failure. DUT silencing in human and rat pancreatic b-cells results in apoptosis via the intrinsic cell death pathway. p.(Tyr142Cys) has 11 heterozygotes and no homozygotes in gnomAD. Sources: Expert list |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.339 | DPP9 |
Zornitza Stark gene: DPP9 was added gene: DPP9 was added to Mendeliome. Sources: Expert Review Mode of inheritance for gene: DPP9 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: DPP9 were set to 36112693 Phenotypes for gene: DPP9 were set to Autoinflammatory syndrome MONDO:0019751, DPP9-related; recurrent fevers; repeated infections; herpes susceptibility; cytopenias Review for gene: DPP9 was set to GREEN Added comment: Three unrelated families with Hatipoğlu syndrome with biochemical and cellular assays, mouse and zebrafish models. Immunological features of recurrent fevers, repeated infections, herpes susceptibility, cytopenias. Sources: Expert Review |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.332 | PTPA |
Zornitza Stark gene: PTPA was added gene: PTPA was added to Mendeliome. Sources: Literature Mode of inheritance for gene: PTPA was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: PTPA were set to 36073231 Phenotypes for gene: PTPA were set to Intellectual disability, MONDO: 36073231, PTPA-related Review for gene: PTPA was set to AMBER Added comment: Biallelic PTPA pathogenic variants lead to a form of ID with later-onset parkinsonism based on 4 individuals from 2 families in the literature. Affected individuals were homozygous for missense variants demonstrated to result to reduced mRNA and protein levels as well as PP2A complex activation. Drosophila studies support an age-dependent locomotor dysfunction. Variants in other PP2A-complex-related genes also lead to NDDs. Summary provided below. There is currently no associated phenotype in OMIM, G2P, PanelApp UK or SysID. Consider inclusion in relevant panels (ID, Parkinsonism/movement disorders, etc) with amber rating pending further reports. ------ Fevga, Tesson et al (2022 - PMID: 36073231) describe the features of 4 individuals, from 2 unrelated families, with biallelic pathogenic PTPA variants. These presented with normal or delayed early milestones, learning disability and ID (mild to moderate) followed by progressive signs of parkinsonism (at the age of 11 yrs in 2 sibs, 15 yrs in another individual). Motor symptoms were responsive to levodopa and later to deep brain stimulation. Linkage analysis in one consanguineous family followed by exome revealed homozygosity for a missense PTPA variant (NM_178001:c.893T>G/p.Met298Arg). Exome sequencing in affected subjects from the 2nd family revealed homozygosity for a further missense variant (c.512C>A/p.Ala171Asp). There were no other candidate variants for the phenotype following parental / segregation studies. Role of the gene: As the authors discuss, PTPA (or PPP2R4) is ubiquitously expressed in all tissues incl. brain and encodes a phosphotyrosyl phosphatase activator of the dimeric form of protein phosphatase-2A (PP2A). PP2A in turn, is the major Ser/Thr phosphatase in brain targeting a large number of proteins involved in diverse functions. Activation of PP2A is dependent on its methylation, which is negatively regulated by the PP2A-specific methylesterase (PME-1). By binding to PME-1, PTPA counteracts the negative influence of the former on PP2A. Pathogenic variants in genes encoding subunits/regulators of the PP2A complex (e.g. PPP2R1A or PPP2CA) are associated with neurodevelopmental disorders. Variant studies: Upon overexpression of wt and both variants in a HEK-293 cell line the authors demonstrated that both variants resulted in significantly reduced mRNA and protein levels (which for Ala171Asp were attributed to increased proteasomal degradation). Both variants were shown to result in impaired PP2A complex activation compared to wt. Drosophila / animal models: Pan-neuronal RNAi-mediated knockdown of ptpa in Drosophila resulted in an age-dependent locomotor dysfunction, reversible with L-DOPA treatment. Previous studies in mice suggest cognitive/electrophysiological impairments upon downregulation of PP2A activity in transgenic mice. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.304 | NBAS | Zornitza Stark edited their review of gene: NBAS: Added comment: PMID 35902954 - Biallelic NBAS variants identifed in three HLH patients who harbored no pathogenic variants in any of the known HLH genes. Functionally, impaired NK-cell cytotoxicity and degranulation were revealed in both NBAS biallelic variant patients and in an NBAS-defcient NK-cell line. Knockdown of NBAS in an NK-cell line (IMC-1) using short hairpin RNA (shRNA) resulted in loss of lytic granule polarization and a decreased number of cytotoxic vesicles near the Golgi apparatus.; Changed publications: 31761904, 35902954; Changed phenotypes: Short stature, optic nerve atrophy, and Pelger-Huet anomaly, MIM# 614800, Infantile liver failure syndrome 2, MIM# 616483, Haemophagocytic lymphohistiocytosis (HLH), MONDO:0015541 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.289 | TMEM147 |
Naomi Baker gene: TMEM147 was added gene: TMEM147 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: TMEM147 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: TMEM147 were set to PMID: 36044892 Phenotypes for gene: TMEM147 were set to Neurodevelopmental disorder (MONDO:0700092), TMEM147-related Review for gene: TMEM147 was set to GREEN Added comment: PMID: 36044892; Twelve different variants reported in 23 affected individuals from 15 unrelated families with biallelic variants. All individuals had global developmental delay and intellectual disability. Consistent facial dysmorphisms included coarse facies, prominent forehead, board depressed nasal root, tented mouth, long smooth philtrum, and low-set ears. In vitro studies of missense variants demonstrated accelerated protein degradation via the autophagy-lysosomal pathway, while analysis of primary fibroblasts and granulocytes provided functional evidence of ER and nuclear envelope dysfunction. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.286 | CBLB |
Alison Yeung gene: CBLB was added gene: CBLB was added to Mendeliome. Sources: Literature Mode of inheritance for gene: CBLB was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: CBLB were set to 36006710 Phenotypes for gene: CBLB were set to Autoimmune disease, MONDO:0007179 Review for gene: CBLB was set to GREEN Added comment: Distinct homozygous mutations in CBLB were identified in three unrelated children with early onset autoimmunity. Mice homozygous for the CBL-B p.H257L mutation, which corresponds to the patient's p.H285L mutation, had T and B cell hyper-proliferation in response to antigen receptor cross-linking. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.285 | TYMS |
Lucy Spencer gene: TYMS was added gene: TYMS was added to Mendeliome. Sources: Literature Mode of inheritance for gene: TYMS was set to Other Publications for gene: TYMS were set to 35931051 Phenotypes for gene: TYMS were set to Dyskeratosis congenita MONDO:0015780 Review for gene: TYMS was set to RED Added comment: 8 families with dyskeratosis congenita and heterozygous variants in TYMS. 4 PTCs, 2 missense and 1 splice (2 families had the same frameshift). However in all families 1 unaffected parent was also heterozygous for the same TYSM variant. The other parent in 3 of these families was then shown to carry a heterozygous variant in ENOSF1 which each affected child was also heterozygous for. ENOSF1 has been shown to modify TYMS expression at the RNA level by acting as an antisense molecule to TYMS. ENOSF1 partially overlaps TYMS on chromosome 18 and is transcribed in the opposite direction to TYMS. This paper is suggesting digenic inheritance. The TYMS wild type parent from another family was seen to have a TYMSOS variant which was also observed along with the TYMS variant in their 2 affected children. Immunoblotting showed a stark reduction in TYMS protein level in the cells of affected probands when compared to the parent carrier, wild-type parent, and the controls. Lymphoblastoid cells from affected probands have severe TYMS deficiency, altered cellular deoxyribonucleotide triphosphate pools, and hypersensitivity to the TYMS-specific inhibitor 5-fluorouracil. These defects in the nucleotide metabolism pathway resulted in genotoxic stress, defective transcription, and abnormal telomere maintenance. Gene-rescue studies in cells from affected probands revealed that post-transcriptional epistatic silencing of TYMS is occurring via elevated ENOSF1. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.285 | MET | Zornitza Stark Phenotypes for gene: MET were changed from Renal cell carcinoma, papillary, 1, familial and somatic, MIM# 605074; Papillary renal cell carcinoma MONDO:0017884 to Arthrogryposis, distal, type 11 (MIM#620019), AD; Renal cell carcinoma, papillary, 1, familial and somatic, MIM# 605074; Papillary renal cell carcinoma MONDO:0017884 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.283 | MET |
Zornitza Stark changed review comment from: PMID 30777867: Four-generation Chinese arthrogryposis pedigree with only upper limb involvement. MET c.3701A>G p.Y1234C segregated as heterozygous in 11 affected family members and was absent from 12 unaffected family members. Variant is absent from gnomad. Functional studies showed this variant caused failure of phosphorylation and loss of tyrosine kinase activity of MET receptor. A mouse model was also created with this variant, mutated mice were found to be smaller than WT mice and had reduced myofibres. These mouse models also had defective migration of muscle progenitor cells and impaired proliferation of secondary myoblasts. Phenotypes in this family included camptodactyly, absent flexion crease, and limited forearm supination.; to: PMID 30777867: Four-generation Chinese arthrogryposis pedigree with only upper limb involvement. MET c.3701A>G p.Y1234C segregated as heterozygous in 11 affected family members and was absent from 12 unaffected family members. Variant is absent from gnomad. Functional studies showed this variant caused failure of phosphorylation and loss of tyrosine kinase activity of MET receptor. A mouse model was also created with this variant, mutated mice were found to be smaller than WT mice and had reduced myofibres. These mouse models also had defective migration of muscle progenitor cells and impaired proliferation of secondary myoblasts. Phenotypes in this family included camptodactyly, absent flexion crease, and limited forearm supination. AMBER for this association |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.283 | MET |
Zornitza Stark edited their review of gene: MET: Added comment: PMID 30777867: Four-generation Chinese arthrogryposis pedigree with only upper limb involvement. MET c.3701A>G p.Y1234C segregated as heterozygous in 11 affected family members and was absent from 12 unaffected family members. Variant is absent from gnomad. Functional studies showed this variant caused failure of phosphorylation and loss of tyrosine kinase activity of MET receptor. A mouse model was also created with this variant, mutated mice were found to be smaller than WT mice and had reduced myofibres. These mouse models also had defective migration of muscle progenitor cells and impaired proliferation of secondary myoblasts. Phenotypes in this family included camptodactyly, absent flexion crease, and limited forearm supination.; Changed publications: 30777867 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.252 | FOCAD |
Zornitza Stark gene: FOCAD was added gene: FOCAD was added to Mendeliome. Sources: Expert Review Mode of inheritance for gene: FOCAD was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: FOCAD were set to 35864190 Phenotypes for gene: FOCAD were set to Liver disease, severe congenital, MIM# 619991 Review for gene: FOCAD was set to GREEN Added comment: Moreno Traspas et al 2022 reported 14 children from ten unrelated families with syndromic form of pediatric liver cirrhosis. Genome/exome sequencing analysis reveled biallelic variants in the FOCAD gene. Most of the mutations were nonsense, frameshift, or splice site alterations, predicted to result in a loss of function, but there were also 3 missense variants at highly conserved residues. Western blot analysis of dermal fibroblasts derived from 2 patients showed near absent FOCAD expression in cellular extracts. There were also decreased levels of the SKIC2 protein, suggesting that FOCAD may contribute to the stability of RNA helicase (OMIM: 619991). Sources: Expert Review |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.185 | IKZF1 | Zornitza Stark Phenotypes for gene: IKZF1 were changed from Immunodeficiency, common variable, 13 MIM# 616873; recurrent bacterial respiratory infections; Thrombocytopaenia; immunodeficiency; Hypogammaglobulinaemia; decrease B-cells; decrease B-cell differentiation; decrease memory B/T cells; Low Ig; pneumocystis early CID onset to Immunodeficiency, common variable, 13 MIM# 616873; recurrent bacterial respiratory infections; Thrombocytopaenia; immunodeficiency; Hypogammaglobulinaemia; decrease B-cells; decrease B-cell differentiation; decrease memory B/T cells; Low Ig; pneumocystis early CID onset; Immune dysregulation | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.183 | IKZF1 | Zornitza Stark edited their review of gene: IKZF1: Added comment: PMID 35333544: Eight individuals harboring heterozygous IKZF1R183H or IKZF1R183C variants associated with GOF effects reported. The clinical phenotypes and pathophysiology associated with IKZF1R183H/C differ from those of previously reported patients with IKZF1HI, IKZF1DN, and IKZF1DD and should therefore be considered as a novel IKAROS-associated disease entity. This condition is characterized by immune dysregulation manifestations including inflammation, autoimmunity, atopy, and polyclonal PC proliferation.; Changed publications: 21548011, 26981933, 29889099, 31057532, 7923373, 11805317, 35333544; Changed phenotypes: Immunodeficiency, common variable, 13 MIM# 616873, recurrent bacterial respiratory infections, Thrombocytopaenia, immunodeficiency, Hypogammaglobulinaemia, decrease B-cells, decrease B-cell differentiation, decrease memory B/T cells, Low Ig, pneumocystis early CID onset, Immune dysregulation | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.173 | PMM2 |
Zornitza Stark edited their review of gene: PMM2: Added comment: Association with HIPKD: Cabezas et al (2017) reported co-occurrence of hyperinsulinaemic hypoglycaemia and polycystic kidney disease (HIPKD in 17 children from 11 unrelated families. Patients presented with hyperinsulinaemic hypoglycaemia in infancy and enlarged kidneys with multiple kidney cysts. Some progressed to ESKD and some had liver cysts. Whole-genome linkage analysis in 5 informative families identified a single significant locus on chromosome 16p13.2. Sequencing of the coding regions of all linked genes failed to identify biallelic mutations. Instead, they found in all patients a promoter mutation (c.-167G>T) in PMM2, either homozygous or in trans with PMM2 coding mutations. They found deglycosylation in cultured pancreatic β cells altered insulin secretion. In vitro, the PMM2 promoter mutation associated with decreased transcriptional activity in patient kidney cells and impaired binding of the transcription factor ZNF143. In silico analysis suggested an important role of ZNF143 for the formation of a chromatin loop including PMM2. They proposed that the PMM2 promoter mutation alters tissue-specific chromatin loop formation, with consequent organ-specific deficiency of PMM2 leading to the restricted phenotype of HIPKD. None of the patients exhibited the typical clinical or diagnostic features of CDG1A. Serum transferrin glycosylation was normal in 11 patients who had assessment.; Changed publications: 28108845, 28373276, 32595772; Changed phenotypes: Congenital disorder of glycosylation, type Ia (MIM#212065), Hyperinsulinaemic Hypoglycaemia and Polycystic Kidney Disease (HIPKD), MONDO:0020642, PMM2-related |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.158 | C9orf84 |
Zornitza Stark changed review comment from: 8 families reported with bi-allelic variants in this gene and spermatogenic failure. Sources: Literature; to: 8 families reported with bi-allelic variants in this gene and spermatogenic failure. A male germ cell-specific Shoc1 knockout mouse model recapitulates the phenotype (germline knockout: early lethality). HGNC approved name is SHOC1. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.147 | CLDN5 |
Zornitza Stark gene: CLDN5 was added gene: CLDN5 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: CLDN5 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: CLDN5 were set to 35714222 Phenotypes for gene: CLDN5 were set to alternating hemiplegia, MONDO:0016210, CLDN5-related Mode of pathogenicity for gene: CLDN5 was set to Loss-of-function variants (as defined in pop up message) DO NOT cause this phenotype - please provide details in the comments Review for gene: CLDN5 was set to AMBER Added comment: PMID: 35714222; Hashimoto, Y. et al. (2022): Two unrelated cases (early-onset) with alternating hemiplegia with microcephaly were shown to have the same de novo variant, NM_001363066.2:c.178G>A, p.(Gly60Arg). One with Jewish / Tunisian ancestry: Onset was at 8 months, three episodes of febrile tonic-clonic 1 seizures of the four limbs, with eye rolling, loss of consciousness, transient left and right post-2 ictal hemiparesis and vomiting. The other with Asian / European ancestry: Onset was at 30 months with three iterative episodes of febrile and non-febrile hemiplegia and loss of 18 consciousness. The recurrent episodes alternatively involved the left-and 19 right-hand side, then generalised and were followed by post ictal hemiparesis. CT scans of both showed brain calcifications and aberrant blood flow patterns. Transfected cell lines with this variant, c178G>A, showed higher chloride ion permeability and lower sodium ion permeability when compared to wildtype. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.137 | NFATC2 |
Paul De Fazio gene: NFATC2 was added gene: NFATC2 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: NFATC2 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: NFATC2 were set to 35789258 Phenotypes for gene: NFATC2 were set to Skeletal system disorder MONDO:0005172 Review for gene: NFATC2 was set to RED gene: NFATC2 was marked as current diagnostic Added comment: Patient born to consanguineous parents homozygous for a frameshift variant. No other (unaffected) members of the family were homozygous. Family history of recurrent childhood deaths. After a healthy birth the patient developed painless decreased range of motion at 1.5yrs leading to difficulty with ambulation at 3yrs. Formal orthopedic assessment at age 15 years demonstrated a neurodevelopmentally normal young man with marked bilateral fixed flexion contractures of knees, hips, and ankles. The main musculoskeletal findings were painless contractures of the large and small joints of the upper and lower limbs, osteochondromas, and osteopenia. Patient was diagnosed with B-cell lymphoma at age 18. Patient CD8+ T-cells show impaired polyfunctionality, and the patient had an accumulation of non-functional memory CD4+ T-cells. TFH cell function was also impaired. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.134 | CCDC155 |
Melanie Marty gene: CCDC155 was added gene: CCDC155 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: CCDC155 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: CCDC155 were set to 35674372; 35708642; 29790874; 35587281 Phenotypes for gene: CCDC155 were set to Non-obstructive azoospermia; Premature ovarian insufficiency Review for gene: CCDC155 was set to GREEN Added comment: Current HGNC name is KASH5 Summary: 4 families reported with non-obstructive azoospermia or premature ovarian insufficiency. Functional studies have been performed and mouse models recapitulate the phenotype. PMID: 35674372 CNV and frameshift variants in KASH5 were identified in a non-obstructive azoospermia affected patient and in his infertile sister by whole-exome sequencing and CNV array. Kash5 knockout mouse displayed similar phenotypes, including a meiotic arrest at a zygotene-like stage and impaired pairing and synapsis. PMID: 35708642 Hom splice identified in KASH5 in 2 sisters with premature ovarian insufficiency. In vitro studies found the variant disturbed the nuclear membrane localization of KASH5 and its binding with SUN1. Moreover, the Kash5 C-terminal deleted mice revealed defective meiotic homolog pairing and accelerated depletion of oocytes. PMID: 29790874 2 brothers with non-obstructive azoospermia with hom missense in CCDC155 35587281 2 siblings with hom missense in CCDC155 non-obstructive azoospermia and premature ovarian insufficiency. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.128 | PABPC1 |
Elena Savva gene: PABPC1 was added gene: PABPC1 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: PABPC1 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown Publications for gene: PABPC1 were set to PMID: 35511136 Phenotypes for gene: PABPC1 were set to Neurodevelopmental disorder, PABPC1-related (MONDO#0700092) Review for gene: PABPC1 was set to GREEN Added comment: PMID: 35511136 - 4 probands with an overlapping phenotype of DD, expressive speech delay, and autistic features and heterozygous de novo variants that cluster in the PABP domain of PABPC1. Electroporation of mouse embryo brains showed that Pabpc1 knockdown decreases the proliferation of neural progenitor cells. Wild-type Pabpc1 could rescue this disturbance, whereas 3 of the 4 variants did not. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.126 | CHMP3 |
Chern Lim gene: CHMP3 was added gene: CHMP3 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: CHMP3 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: CHMP3 were set to PMID: 35710109 Phenotypes for gene: CHMP3 were set to Hereditary spastic paraplegia (MONDO:0019064), CHMP3-related Review for gene: CHMP3 was set to AMBER gene: CHMP3 was marked as current diagnostic Added comment: PMID: 35710109 - Single large family with consanguinity, homozygous missense variant in 5 affected individuals with intellectual and progressive motor disabilities, seizures and spastic quadriplegia. - Functional studies showed reduced CHMP3 protein in patient's fibroblasts, lenti-rescue study showed improved cellular phenotypes associated with impaired autophagy. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.110 | POU2AF1 |
Zornitza Stark gene: POU2AF1 was added gene: POU2AF1 was added to Mendeliome. Sources: Expert Review Mode of inheritance for gene: POU2AF1 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: POU2AF1 were set to 33571536 Phenotypes for gene: POU2AF1 were set to Agammaglobulinaemia, MONDO:0015977, POU2AF1-related Review for gene: POU2AF1 was set to RED Added comment: Single individual from consanguineous parents lacking immunoglobulins despite normal total B-cell numbers. Sources: Expert Review |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.105 | COPG1 |
Zornitza Stark gene: COPG1 was added gene: COPG1 was added to Mendeliome. Sources: Expert Review Mode of inheritance for gene: COPG1 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: COPG1 were set to 33529166 Phenotypes for gene: COPG1 were set to Combined immunodeficiency MONDO:0015131, COPG1-related Review for gene: COPG1 was set to RED Added comment: Five Omani siblings, born to consanguineous parents, homozygous missense. Homozygous Copg1K652E mice had increased ER stress in activated T and B cells, poor antibody responses, and normal numbers of T cells that proliferated normally, but underwent increased apoptosis upon activation. Exposure of the mutants to pet store mice caused weight loss, lymphopenia, and defective T cell proliferation that recapitulated the findings in the patients. The ER stress-relieving agent tauroursodeoxycholic acid corrected the immune defects of the mutants and reversed the phenotype they acquired following exposure to pet store mice. Sources: Expert Review |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.65 | RBFOX2 |
Chern Lim changed review comment from: - PMID: 26785492: Analysed CHD (1213 congenital heart disease trios) and control (autism spectrum disorder) trios for de novo mutations. Found RBFOX2 gene had significantly more damaging de novo variants than expected: 3 de novo LoF variants (eg. nonsense, frameshift, or canonical splice disruptions). All 3 probands have hypoplastic left heart syndrome (HLHS). No further patient-specific clinical or variant info were available. Same cohort later included in PMID: 32368696, listed 4 de novo variants in this gene, in patients with left ventricular outflow tract obstruction (LVOTO) or conotruncal defects (CTDs). - PMID: 27670201: RNA expression study showed the silenced allele harbours a nonsense RBFOX2 variant (Arg287*), CHD patient heart tissue sample, same patient published in PMID: 26785492. - PMID: 27485310: Functional studies using heart tissue sample from HLHS patient with NM_001031695.2:c.859C>T p.(Arg287*) showed subcellular mislocalisation, impacting its nuclear function in RNA splicing. - PMID: 25205790: De novo 111.3kb del chr22:36038076-36149338 (hg19) which includes APOL5,APOL6,RBFOX2, in a patient with HLHS. - PMID: 35137168: Rbfox2 conditional knockout mouse model recapitulated several molecular and phenotypic features of HLHS.; to: - PMID: 26785492: Analysed CHD (1213 congenital heart disease trios) and control (autism spectrum disorder) trios for de novo mutations. Found RBFOX2 gene had significantly more damaging de novo variants than expected: 3 de novo LoF variants (1x nonsense, 1x frameshift, 1x canonical splice variants). All 3 probands have hypoplastic left heart syndrome (HLHS) and no extra-cardiac features. Same cohort later included in PMID: 32368696, listed one additional de novo variant in this gene (missense variant) in a patient with conotruncal defects (CTDs). - PMID: 27670201: RNA expression study showed the silenced allele harbours a nonsense RBFOX2 variant (Arg287*), CHD patient heart tissue sample, same patient published in PMID: 26785492. - PMID: 27485310: Functional studies using heart tissue sample from HLHS patient with NM_001031695.2:c.859C>T p.(Arg287*) showed subcellular mislocalisation, impacting its nuclear function in RNA splicing. - PMID: 25205790: De novo 111.3kb del chr22:36038076-36149338 (hg19) which includes APOL5,APOL6,RBFOX2, in a patient with HLHS. - PMID: 35137168: Rbfox2 conditional knockout mouse model recapitulated several molecular and phenotypic features of HLHS. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.45 | PTPN13 |
Ain Roesley gene: PTPN13 was added gene: PTPN13 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: PTPN13 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: PTPN13 were set to 35643866 Phenotypes for gene: PTPN13 were set to bone marrow failure syndrome MONDO#0000159, PTPN13-related Review for gene: PTPN13 was set to AMBER gene: PTPN13 was marked as current diagnostic Added comment: 2 families Family A: 3 affecteds only 2 sequenced. Hom for a missense 3/3 Anaemia, 1x thrombocytopaenia, 1x severe neutropaenia, bone marrow with pure red cell aplasia noted that the sibling who wasn't sequenced had normal bone marrow morphology Family B: Chet for a missense and inframe del of 1 amino acid Persistent hypogammaglobulinemia after transplant (at least 14 months after) with normal blood counts and Pre-B ALL with MLL rearrangement In vitro studies of individual variants were LoF, including defective erythroid and megakaryocytic differentiation, consistent with anaemia and thrombocytopaenia reported in family A Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.44 | BUB1 |
Paul De Fazio gene: BUB1 was added gene: BUB1 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: BUB1 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: BUB1 were set to 35044816; 19772675; 19117986; 23209306 Phenotypes for gene: BUB1 were set to Intellectual disability and microcephaly Review for gene: BUB1 was set to GREEN gene: BUB1 was marked as current diagnostic Added comment: 2 unrelated patients with ID, microcephaly, short stature, dysmorphic features reported with biallelic variants: P1 (3yo male): homozygous start-loss variant (2 hets and 0 hom in gnomAD). Functional testing showed a small amount of full-length protein was translated, and BUB1 recruitment to kinetochores was nearly undetectable. P2 (16yo female): compound heterozygous for a canonical splice variant (1 het and no hom in gnomAD) and an NMD-predicted frameshift variant (absent from gnomAD). The splice variant was shown to result in an in-frame deletion of 54 amino acids in the kinase domain. P2 cells have reduced protein levels but essentially no kinase activity. BUB1 patient cells have impaired mitotic fidelity. Homozygous Bub1 disruption in mice is embryonic lethal (PMID:19772675). A hypomorphic mouse is viable with increased tumourigenesis with ageing and aneuploidy (PMID:19117986). A kinase-dead mouse does not show increased tumourigenesis but does have a high frequency of aneuploid cells (PMID:23209306) Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.35 | GIMAP6 |
Elena Savva gene: GIMAP6 was added gene: GIMAP6 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: GIMAP6 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: GIMAP6 were set to PMID: 35551368; 33328581 Phenotypes for gene: GIMAP6 were set to Autophagy, immune competence and inflammation Review for gene: GIMAP6 was set to AMBER Added comment: PMID: 35551368, PMID: 33328581 - K/O mice show autophagy, redox regulation, and polyunsaturated fatty acid (PUFA)–containing lipids and die prematurely from microangiopathic glomerulosclerosis with immunodeficiency. - 2 unrelated families (3 patients) w/ a homozygous missense (p.Gly153Val) and nonsense (p.Trp86*). All unaffected siblings were heterozygous. Patient 1 (missense) presented with Coombs-positive hemolytic anemia, hepatosplenomegaly, Cranial MRI showed bilateral effusions, sulcal hyperintensity, and lateral parietal subcortical acute focal ischemic lesions. Patient 2 (nonsense) presented with recurrent purulent otitis media and a chronic wet cough, persistent jaundice, recurrent chest and ear infections, lingular consolidation, mild bronchiectasis, bibasilar bronchial wall thickening, right peribronchial consolidation, right lower lobe bronchiectasis, bilateral axillary lymphadenopathy, and splenomegaly. Patient 3 (nonsense) presented with suffered headaches, abdomen pain, mouth ulcers, and recurrent infections - Functional studies show patient 1 (missense) with reduced protein expression on western blot, and patient 2/3 (nonsense) with no protein expression. T cells of Pt 1 were similar to mouse K/O model (elevated basal LC3-II, reduced autophagic flux). gnomAD: 0 homozygous PTCs, but a very common canonical splice which is present in the non-canonical transcript Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.34 | TRIM47 |
Zornitza Stark gene: TRIM47 was added gene: TRIM47 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: TRIM47 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: TRIM47 were set to 35511193 Phenotypes for gene: TRIM47 were set to Genetic cerebral small vessel disease MONDO:0018787 Review for gene: TRIM47 was set to RED Added comment: GWAS data: Combined evidence from summary-based Mendelian randomization studies and profiling of human loss-of-function allele carriers showed an inverse relation between TRIM47 expression in the brain and blood vessels and extensive small vessel disease severity. Observed significant enrichment of Trim47 in isolated brain vessel preparations compared to total brain fraction in mice, in line with the literature showing Trim47 enrichment in brain endothelial cells at single cell level. Functional evaluation of TRIM47 by small interfering RNAs-mediated knockdown in human brain endothelial cells showed increased endothelial permeability, an important hallmark of cerebral small vessel disease pathology. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.15 | IKBKG |
Zornitza Stark edited their review of gene: IKBKG: Added comment: X-linked systemic autoinflammatory disease (SAIDX) is characterized by the onset of systemic autoinflammation in the first months of life. Features include lymphadenopathy, hepatosplenomegaly, fever, panniculitis, and nodular skin rash. Additional manifestations may include inflammation of the optic nerve, intracranial hemorrhage, and lipodystrophy. Laboratory studies show hypogammaglobulinemia, increased or decreased white blood cell count, autoimmune cytopenias, elevated serum inflammatory markers, and a type I interferon signature. 6 unrelated boys and a girl reported. All variants resulted in absence of the domain encoded by exon 5 (NEMOdelEx5). Note variants in this gene are associated with immunodeficiency +/- ectodermal features and with IP.; Changed phenotypes: Ectodermal dysplasia and immunodeficiency 1, MIM# 300291, Immunodeficiency 33 , MIM#300636, Incontinentia pigmenti, MIM# 308300, Autoinflammatory disease, systemic, X-linked, MIM# 301081 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.3 | RDH11 | Zornitza Stark edited their review of gene: RDH11: Added comment: 2nd case reported: 1 Chinese patient with retinitis pigmentosa, juvenile cataracts, intellectual disability, and myopathy. Trio-based WES and whole genomic CNV detection found compound heterozygous variants in RDH11 (p.Leu313Pro and c.75-3C>A) with biparental inheritance. Variant c.75-3C>A was confirmed to be a splice-site mutation by cDNA sequencing. It caused exon 2 skipping, resulting in a frameshift mutation and premature translation termination (p.Lys26Serfs*38). They found mislocalization of RDH11 protein in muscle cells of the patient by using immunofluorescence staining. Retinol dehydrogenase 11 (RDH11) is an 11-cis-retinol dehydrogenase that has a well-characterized, albeit auxiliary role in the retinoid cycle. Diseases caused by mutations in the RDH11 gene are very rare, and only one affected family with eye and intelligence involvement has been reported.; Changed rating: AMBER; Changed publications: 24916380, 15634683, 30731079, 18326732, 34988992 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.1 | POLR3F | Zornitza Stark Phenotypes for gene: POLR3F were changed from Severe VZV infection to Immunodeficiency 101 (varicella zoster virus-specific), MIM# 619872 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v1.0 | POLR3F | Zornitza Stark edited their review of gene: POLR3F: Changed phenotypes: Immunodeficiency 101 (varicella zoster virus-specific), MIM# 619872 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.14650 | ADD1 |
Chirag Patel gene: ADD1 was added gene: ADD1 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: ADD1 was set to BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal Publications for gene: ADD1 were set to PMID: 34906466 Phenotypes for gene: ADD1 were set to Intellectual disability, corpus callosum dysgenesis, and ventriculomegaly; no OMIM # Review for gene: ADD1 was set to GREEN Added comment: 4 unrelated individuals affected by ID and/or complete or partial agenesis of corpus callosum, and enlarged lateral ventricles. WES found loss-of-function variants - 1 recessive missense variant and 3 de novo variants. The recessive variant is associated with ACC and enlarged lateral ventricles, and the de novo variants were associated with complete or partial agenesis of corpus callosum, mild ID and attention deficit. Human variants impair ADD1 protein expression and/or dimerization with ADD2. Add1 knockout mice recapitulate corpus callosum dysgenesis and ventriculomegaly phenotypes. Three adducin genes (ADD1, ADD2, and ADD3) encode cytoskeleton proteins that are critical for osmotic rigidity and cell shape. ADD1, ADD2, and ADD3 form heterodimers (ADD1/ADD2, ADD1/ADD3), which further form heterotetramers. Adducins interconnect spectrin and actin filaments to form polygonal scaffolds beneath the cell membranes and form ring-like structures in neuronal axons. Adducins regulate mouse neural development, but their function in the human brain is unknown Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.14588 | ITPKB | Zornitza Stark Phenotypes for gene: ITPKB were changed from Severe combined immunodeficiency, absent T cells, present B cells and NK cells to Severe combined immunodeficiency MONDO:0015974, absent T cells, present B cells and NK cells | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.14520 | MLPH | Zornitza Stark Phenotypes for gene: MLPH were changed from to Griscelli syndrome, type 3, MIM# 609227 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.14517 | MLPH | Zornitza Stark reviewed gene: MLPH: Rating: GREEN; Mode of pathogenicity: None; Publications: 12897212, 32864751, 31721180; Phenotypes: Griscelli syndrome, type 3, MIM# 609227; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.14488 | MET | Zornitza Stark Phenotypes for gene: MET were changed from to Renal cell carcinoma, papillary, 1, familial and somatic, MIM# 605074; Papillary renal cell carcinoma MONDO:0017884 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.14486 | MET | Zornitza Stark edited their review of gene: MET: Changed phenotypes: Renal cell carcinoma, papillary, 1, familial and somatic, MIM# 605074, Papillary renal cell carcinoma MONDO:0017884 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.14486 | MET | Zornitza Stark reviewed gene: MET: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Papillary renal cell carcinoma MONDO:0017884; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.14410 | MAGT1 |
Zornitza Stark changed review comment from: PMID: 31036665; - 3 affecteds (males; 2x CDG and 1x XMEN) - All 3 patients have an N-glycosylation defect PMID: 31714901; - 23 XMEN patients from 17 families - glycoproteomic analysis on T cells from 3 patients with XMEN showed defective glycosylation; to: PMID: 31036665; - 3 affecteds (males; 2x CDG and 1x XMEN) - All 3 patients have an N-glycosylation defect PMID: 31714901; - 23 XMEN patients from 17 families - glycoproteomic analysis on T cells from 3 patients with XMEN showed defective glycosylation These likely represent a single disorder. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.14379 | RBFOX2 |
Chern Lim edited their review of gene: RBFOX2: Added comment: - PMID: 26785492: Analysed CHD (1213 congenital heart disease trios) and control (autism spectrum disorder) trios for de novo mutations. Found RBFOX2 gene had significantly more damaging de novo variants than expected: 3 de novo LoF variants (eg. nonsense, frameshift, or canonical splice disruptions). All 3 probands have hypoplastic left heart syndrome (HLHS). No further patient-specific clinical or variant info were available. Same cohort later included in PMID: 32368696, listed 4 de novo variants in this gene, in patients with left ventricular outflow tract obstruction (LVOTO) or conotruncal defects (CTDs). - PMID: 27670201: RNA expression study showed the silenced allele harbours a nonsense RBFOX2 variant (Arg287*), CHD patient heart tissue sample, same patient published in PMID: 26785492. - PMID: 27485310: Functional studies using heart tissue sample from HLHS patient with NM_001031695.2:c.859C>T p.(Arg287*) showed subcellular mislocalisation, impacting its nuclear function in RNA splicing. - PMID: 25205790: De novo 111.3kb del chr22:36038076-36149338 (hg19) which includes APOL5,APOL6,RBFOX2, in a patient with HLHS. - PMID: 35137168: Rbfox2 conditional knockout mouse model recapitulated several molecular and phenotypic features of HLHS.; Changed publications: PMID: 26785492, 27670201, 27485310, 25205790, 35137168, 26785492 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.14375 | RNF139 | Zornitza Stark Phenotypes for gene: RNF139 were changed from to Renal cell carcinoma MIM#144700 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.14345 | RBFOX2 |
Chern Lim gene: RBFOX2 was added gene: RBFOX2 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: RBFOX2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: RBFOX2 were set to PMID: 26785492; 27670201; 27485310; 25205790; 35137168 Phenotypes for gene: RBFOX2 were set to Hypoplastic left heart syndrome (HLHS) Review for gene: RBFOX2 was set to AMBER gene: RBFOX2 was marked as current diagnostic Added comment: - PMID: 26785492: Analysed CHD (1213 congenital heart disease trios) and control (autism spectrum disorder) trios for de novo mutations. Found RBFOX2 gene had significantly more damaging de novo variants than expected: 3 de novo LoF variants (eg. nonsense, frameshift, or canonical splice disruptions). All 3 probands have hypoplastic left heart syndrome (HLHS). No further patient-specific clinical or variant info were available. - PMID: 27670201: RNA expression study showed the silenced allele harbours a nonsense RBFOX2 variant (Arg287*), CHD patient heart tissue sample, same patient published in PMID: 26785492. - PMID: 27485310: Functional studies using heart tissue sample from HLHS patient with NM_001031695.2:c.859C>T p.(Arg287*) showed subcellular mislocalisation, impacting its nuclear function in RNA splicing. - PMID: 25205790: De novo 111.3kb del chr22:36038076-36149338 (hg19) which includes APOL5,APOL6,RBFOX2, in a patient with HLHS. - PMID: 35137168: Rbfox2 conditional knockout mouse model recapitulated several molecular and phenotypic features of HLHS. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.14291 | DSCAM |
Krithika Murali edited their review of gene: DSCAM: Added comment: No OMIM gene disease association. Variants predominantly identified from large cohort studies with limited phenotypic information. Associations with ID, ASD, Hirschsprung disease reported. One homozygous splice site variant reported with no parental phenotypes provided. PMID 34253863 Lim et al 2021 - 12 yo proband with severe autism spectrum disorder diagnosed age 3, de novo heterozygous c.2051 del p.(L684X) variant identified (absent from gnomAD). Skin fibroblast human iPSC cells generated from proband and healthy controls. Forebrain-like induced neuronal cells showed reduced mRNA expression for NMDA-R subunits. PMID 28600779 Monies et al 2017 - Homozygous splice site variant identified in proband from consanguineous Saudi family. Proband had growth restriction, microcephaly, developmental delay. Parental phenotype not provided. PMID 30095639 and PMID 23671607 - report association between DSCAM polymorphisms and Hirschsprung disease in Chinese and European populations. PMID 27824329 Wang et al 2016 - 2 denovo mutations in mixed ID/ASD cohort of 1,045; including comparison of previously published cases 6 LOF out of 4,998 cases. PMID 28191889 2 denovo LOF in 13,407 mixed ID/ASD cases plus 4 previosly published cases our ot 6158; conclude denovo LOF enriched in cases vs controls PMID 21904980; mouse model – het LOF mice show hydrocephalus, decreased motor function and impaired motor learning ability, Evidence for missense lacking currently; Changed publications: 34253863, 32807774, 28600779, 21904980, 28191889, 27824329, 30095639, 23671607 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.14223 | RNF139 | Belinda Chong reviewed gene: RNF139: Rating: RED; Mode of pathogenicity: None; Publications: 9689122; Phenotypes: Renal cell carcinoma MIM#144700; Mode of inheritance: Other | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.14219 | FUT1 | Bryony Thompson Added comment: Comment on list classification: Biallelic loss of function variants produce the Bombay blood group, which is a recessive H-deficient red blood cell phenotype. Bombay and para-Bombay individuals display no apparent deleterious phenotype except in circumstances requiring blood transfusion. No evidence for Mendelian disease associated with this gene. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.14217 | FUT1 | Bryony Thompson Added comment: Comment on list classification: Biallelic loss of function variants cause Bombay phenotype, which is a recessive H-deficient red blood cell phenotype. Bombay and para-Bombay individuals display no apparent deleterious phenotype except in circumstances requiring blood transfusion. No evidence for Mendelian disease associated with this gene. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.14157 | FOXN1 | Bryony Thompson Phenotypes for gene: FOXN1 were changed from to T-cell immunodeficiency, congenital alopecia, and nail dystrophy MONDO:0011132 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.14152 | FOXN1 | Bryony Thompson reviewed gene: FOXN1: Rating: GREEN; Mode of pathogenicity: None; Publications: 10206641, 20978268, 20978268, 28636882, 31566583, 31447097; Phenotypes: T-cell immunodeficiency, congenital alopecia, and nail dystrophy MONDO:0011132; Mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal; Current diagnostic: yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.14034 | FH | Bryony Thompson Phenotypes for gene: FH were changed from to hereditary leiomyomatosis and renal cell cancer MONDO:0007888; fumaric aciduria MONDO:0011730 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.14031 | FH | Bryony Thompson reviewed gene: FH: Rating: GREEN; Mode of pathogenicity: None; Publications: 11865300, 28300276, 8200987, 20549362, 31746132; Phenotypes: hereditary leiomyomatosis and renal cell cancer MONDO:0007888, fumaric aciduria MONDO:0011730; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal; Current diagnostic: yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.13991 | LZTS1 | Alison Yeung Phenotypes for gene: LZTS1 were changed from to Esophageal squamous cell carcinoma, somatic, MIM# 133239 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.13989 | LZTS1 | Alison Yeung reviewed gene: LZTS1: Rating: RED; Mode of pathogenicity: None; Publications: ; Phenotypes: Esophageal squamous cell carcinoma, somatic, MIM# 133239; Mode of inheritance: Unknown | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.13798 | KLF4 |
Elena Savva gene: KLF4 was added gene: KLF4 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: KLF4 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown Publications for gene: KLF4 were set to PMID: 35168889; 10431239 Phenotypes for gene: KLF4 were set to Hereditary palmoplantar keratoderma MONDO:0019272, KFL4-related Review for gene: KLF4 was set to GREEN Added comment: PMID: 35168889 - 3 patients from 2 unrelated families with palmoplantar keratoderma. Two variants found, fs and a missense. Functional studies on patient skin biopsy shows "slightly but significantly decreased" protein expression in both children. Gene was shown to bind the DSG1 promoter and regulate expression. Transfected cells showed reduced DSG1 expression. PMID: 10431239 - mouse K/O died shortly after birth due to loss of skin barrier function gnomAD: single het fs in the population Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.13792 | CD164 |
Alison Yeung gene: CD164 was added gene: CD164 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: CD164 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: CD164 were set to 26197441; 35254497; 26197441 Phenotypes for gene: CD164 were set to Deafness, autosomal dominant 66, MIM# 616969 Review for gene: CD164 was set to GREEN Added comment: p.(Arg192Ter), a truncating variant that results in loss of 6 amino acids, was detected in two families (one Polish and one Korean) with hearing loss. Four affected (heterozygous) and two unaffected (neg) were tested, however 14 members had been diagnosed with HL in a large multi generational family (gene panel 237 genes). The second family (WES) had two affected heterozygous and no unaffected were tested. This same variant had previously been reported in a Danish family (12 affected heterozygous and 13 unaffected negative, but one younger member unaffected are heterozygous) with hearing loss (PMID: 26197441), for which functional studies in HEK cells demonstrated that the truncated protein was almost completely retained on the plasma cell membrane in contrast to the wild-type protein, which targeted primarily to the endo-lysosomal compartments. The YHTL motif, deleted by the c.574C>T nonsense mutation, is a canonical sorting motif known to be recognized by specific adaptor proteins in the cytosol, leading to subcellular trafficking of the transmembrane protein to endosomes and lysosomes. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.13787 | TULP3 |
Anna Ritchie gene: TULP3 was added gene: TULP3 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: TULP3 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: TULP3 were set to PMID: 35397207 Phenotypes for gene: TULP3 were set to progressive degenerative liver fibrosis with variable fibrocystic kidney disease; hypertrophic cardiomyopathy MONDO:0005045 Review for gene: TULP3 was set to GREEN Added comment: 15 individuals from eight unrelated families with bi-allelic variants in TULP3 were detected. The affected individuals reported are mostly adults, in the 3rd through 7th decades of life, and presented with progressive degenerative liver fibrosis with variable fibrocystic kidney disease and hypertrophic cardiomyopathy. The human phenotype was ecapitulated in adult zebrafish and confirmed disruption of critical ciliary cargo composition in several primary cell lines derived from affected individuals Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.13390 | PHYH |
Zornitza Stark edited their review of gene: PHYH: Added comment: Refsum disease is an autosomal recessive inborn error of lipid metabolism classically characterized by a tetrad of clinical abnormalities: retinitis pigmentosa, peripheral neuropathy, cerebellar ataxia, and elevated protein levels in the cerebrospinal fluid (CSF) without an increase in the number of cells. Well established gene-disease association.; Changed publications: 9326939, 9326940 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.13297 | PDGFRA |
Krithika Murali changed review comment from: ?Suitability for Incidentalome versus Mendeliome based on adult age of diagnosis in reported cases. --- Six unrelated families reported with heterozygous germline variants associated with familial GIST and/or inflammatory fibroid polyps - IFP (benign lesions caused by excessive tissue proliferation and inflammatory cell infiltration into the lumen of the GI tract). Note that reported individuals diagnosed as adults. One individual reported with diagnosis of gastric mass/polyps age 22 (in 1977) raising the possibility of pre-symptomatic disease onset in adolescence. Green PanelApp England in the following panels: tumour predisposition - childhood onset; inherited predisposition to GIST; sarcoma cancer susceptibility. --- PMID 34107389 Hodan et al 2021 - report a 35 yo F with jejunal IFP and a heterozygous germline missense PDGFRA variant (c.1664A>G p.Y555C) . The variant segregated with 3 relatives with confirmed IFPs. Two obligate carriers were reported to have had a similar phenotype while at least one obligate male carrier had no reported history of IFPs. This variant was also reported in an unrelated family with multiple IFPs in 2006. PMID 29486293 Manley et al 2018 - proband is a 50 yo M with multiple ileal intusussceptions and IFPs and GIST. Heterozygous D846V germline variant identified. Variant identified in daughter and 2 siblings. Coarser face, coarser skin, broader hands and feet, unexplained premature loss of teeth requiring dentures in their 40s described in relatives with the variant, no polyps or tumour identified in screened family members. Pdgfra +/K mutant mice recapitulated the human phenotype. Mice with the constitutively activated mutant PDGFRA shown to have diffuse expansion of the gastrointestinal submucosa, which exhibits an increased number of spindled fibroblast-like cells and marked collagen deposition. Mutant mice also develop intestinal polyps morphologically similar to IFPs. The Pdgfra +/K mice also exhibit thickened skin due to excess collagen deposition within the dermis and subcutaneous tissues. PMID 25975287 Ricci et al 2015 - report a family with het germline P653L PDGFRA missense variant. The proband was a 67 yo M with multiple intra-abdominal GIST and gastric/colonic inflammatory fibroid polyps. Multiple adult relatives (youngest age 31) were diagnosed with IFPs/fibrous tumours with the variant segregating with disease. PMID: 18670346 Carney et al 2008 and PMID: 17566086 Pasini et al 2007 - heterozygous germline PDGFRA mutation (V561D) in an individual with GIST and multiple polyps, diagnosed initially aged 22 with multiple GIST/polyps. No other relatives available for genotyping and no other significant family history reported. PMID: 17087943 de Raedt et al 2006 - heterozygous PDGFRA(Y555C) variant reported in a family with multiple relatives affected by IFP, including one death from secondary bowel obstruction age 35. PMID: 14699510 Chompret et al 2004 - Heterozygous c.2675G>T D846Y germline variant detected in a French family with 5 relatives developing adult-onset GIST, variant segregated with disease. -- Gain of function somatic variants associated with sporadic GIST. Somatic chromosomal rearrangements resulting in PDGFRA and FIP1L1 gene fusion associated with idiopathic hypereosinophilic syndrome.; to: Six unrelated families reported with heterozygous germline variants associated with familial GIST and/or inflammatory fibroid polyps - IFP (benign lesions caused by excessive tissue proliferation and inflammatory cell infiltration into the lumen of the GI tract). Note that reported individuals diagnosed as adults. One individual reported with diagnosis of gastric mass/polyps age 22 (in 1977) raising the possibility of pre-symptomatic disease onset in adolescence. Green PanelApp England in the following panels: tumour predisposition - childhood onset; inherited predisposition to GIST; sarcoma cancer susceptibility. --- PMID 34107389 Hodan et al 2021 - report a 35 yo F with jejunal IFP and a heterozygous germline missense PDGFRA variant (c.1664A>G p.Y555C) . The variant segregated with 3 relatives with confirmed IFPs. Two obligate carriers were reported to have had a similar phenotype while at least one obligate male carrier had no reported history of IFPs. This variant was also reported in an unrelated family with multiple IFPs in 2006. PMID 29486293 Manley et al 2018 - proband is a 50 yo M with multiple ileal intusussceptions and IFPs and GIST. Heterozygous D846V germline variant identified. Variant identified in daughter and 2 siblings. Coarser face, coarser skin, broader hands and feet, unexplained premature loss of teeth requiring dentures in their 40s described in relatives with the variant, no polyps or tumour identified in screened family members. Pdgfra +/K mutant mice recapitulated the human phenotype. Mice with the constitutively activated mutant PDGFRA shown to have diffuse expansion of the gastrointestinal submucosa, which exhibits an increased number of spindled fibroblast-like cells and marked collagen deposition. Mutant mice also develop intestinal polyps morphologically similar to IFPs. The Pdgfra +/K mice also exhibit thickened skin due to excess collagen deposition within the dermis and subcutaneous tissues. PMID 25975287 Ricci et al 2015 - report a family with het germline P653L PDGFRA missense variant. The proband was a 67 yo M with multiple intra-abdominal GIST and gastric/colonic inflammatory fibroid polyps. Multiple adult relatives (youngest age 31) were diagnosed with IFPs/fibrous tumours with the variant segregating with disease. PMID: 18670346 Carney et al 2008 and PMID: 17566086 Pasini et al 2007 - heterozygous germline PDGFRA mutation (V561D) in an individual with GIST and multiple polyps, diagnosed initially aged 22 with multiple GIST/polyps. No other relatives available for genotyping and no other significant family history reported. PMID: 17087943 de Raedt et al 2006 - heterozygous PDGFRA(Y555C) variant reported in a family with multiple relatives affected by IFP, including one death from secondary bowel obstruction age 35. PMID: 14699510 Chompret et al 2004 - Heterozygous c.2675G>T D846Y germline variant detected in a French family with 5 relatives developing adult-onset GIST, variant segregated with disease. -- Gain of function somatic variants associated with sporadic GIST. Somatic chromosomal rearrangements resulting in PDGFRA and FIP1L1 gene fusion associated with idiopathic hypereosinophilic syndrome. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.13289 | HSPG2 |
Zornitza Stark changed review comment from: Allelic disorders with some phenotypic overlap. Schwartz-Jampel syndrome (SJS) is a rare autosomal recessive condition defined by the association of myotonia with chondrodysplasia; blepharophimosis is a key feature. More than 20 families reported. Silverman-Handmaker dyssegmental dysplasia (DDSH) is a lethal autosomal recessive skeletal dysplasia with anisospondyly and micromelia. Individuals with DDSH also have a flat face, micrognathia, cleft palate and reduced joint mobility, and frequently have an encephalocele. The endochondral growth plate is short, the calcospherites (spherical calcium-phosphorus crystals produced by hypertrophic chondrocytes) are unfused, and there is mucoid degeneration of the resting cartilage. Two families reported.; to: Allelic disorders with some phenotypic overlap. Schwartz-Jampel syndrome (SJS) is a rare autosomal recessive condition defined by the association of myotonia with chondrodysplasia; blepharophimosis is a key feature. More than 20 families reported. Silverman-Handmaker dyssegmental dysplasia (DDSH) is a lethal autosomal recessive skeletal dysplasia with anisospondyly and micromelia. Individuals with DDSH also have a flat face, micrognathia, cleft palate and reduced joint mobility, and frequently have an encephalocele. The endochondral growth plate is short, the calcospherites (spherical calcium-phosphorus crystals produced by hypertrophic chondrocytes) are unfused, and there is mucoid degeneration of the resting cartilage. Two families reported. Appears associated with null variants. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.13210 | RSPO1 | Zornitza Stark Phenotypes for gene: RSPO1 were changed from to Palmoplantar hyperkeratosis with squamous cell carcinoma of skin and sex reversal MIM#610644; Palmoplantar hyperkeratosis and true hermaphroditism MIM#610644 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.13125 | RSPO1 | Belinda Chong reviewed gene: RSPO1: Rating: GREEN; Mode of pathogenicity: None; Publications: 17041600, 18085567, 18250098, 18250097; Phenotypes: Palmoplantar hyperkeratosis with squamous cell carcinoma of skin and sex reversal MIM#610644, Palmoplantar hyperkeratosis and true hermaphroditism MIM#610644; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal; Current diagnostic: yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.12804 | TRNT1 | Zornitza Stark Phenotypes for gene: TRNT1 were changed from to Retinitis pigmentosa and erythrocytic microcytosis, MIM# 616959; Sideroblastic anemia with B-cell immunodeficiency, periodic fevers, and developmental delay, MIM# 616084 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.12801 | TRNT1 | Zornitza Stark reviewed gene: TRNT1: Rating: GREEN; Mode of pathogenicity: None; Publications: 25193871, 23553769, 29170023, 27389523, 26494905; Phenotypes: Retinitis pigmentosa and erythrocytic microcytosis, MIM# 616959, Sideroblastic anemia with B-cell immunodeficiency, periodic fevers, and developmental delay, MIM# 616084; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.12738 | PIGA | Zornitza Stark changed review comment from: PIGA 34875027: variants in PIGA causing a neurodevelopment disorder and a juvenile form of hereditary hemochromatosis reported in > three unrelated patients. All patients had increased serum iron, ferritin and transferrin saturation levels, high ALP and low hepcidin. All patients had generalised seizures and intellectual disability. A subpopulation of patient blood cells showed a slight reduction of GPI-anchored proteins, suggesting that the mutations were hypomorphic and retained some residual activity. CRISPR/Cas12a-mediated knockdown of PIGA in Hep3B liver cells eliminated the cell surface expression of GPI-anchored proteins CD59 and hemojuvelin (HJV; 608374), as well as caused decreased expression of hepcidin (606464) compared to controls. These hypomorphic alleles could explain the milder neurologic phenotype, which allowed for sufficiently long survival for the iron overload phenotype to manifest.; to: PMID 34875027: variants in PIGA causing a neurodevelopment disorder and a juvenile form of hereditary hemochromatosis reported in > three unrelated patients. All patients had increased serum iron, ferritin and transferrin saturation levels, high ALP and low hepcidin. All patients had generalised seizures and intellectual disability. A subpopulation of patient blood cells showed a slight reduction of GPI-anchored proteins, suggesting that the mutations were hypomorphic and retained some residual activity. CRISPR/Cas12a-mediated knockdown of PIGA in Hep3B liver cells eliminated the cell surface expression of GPI-anchored proteins CD59 and hemojuvelin (HJV; 608374), as well as caused decreased expression of hepcidin (606464) compared to controls. These hypomorphic alleles could explain the milder neurologic phenotype, which allowed for sufficiently long survival for the iron overload phenotype to manifest. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.12737 | PIGA | Zornitza Stark edited their review of gene: PIGA: Added comment: PIGA 34875027: variants in PIGA causing a neurodevelopment disorder and a juvenile form of hereditary hemochromatosis reported in > three unrelated patients. All patients had increased serum iron, ferritin and transferrin saturation levels, high ALP and low hepcidin. All patients had generalised seizures and intellectual disability. A subpopulation of patient blood cells showed a slight reduction of GPI-anchored proteins, suggesting that the mutations were hypomorphic and retained some residual activity. CRISPR/Cas12a-mediated knockdown of PIGA in Hep3B liver cells eliminated the cell surface expression of GPI-anchored proteins CD59 and hemojuvelin (HJV; 608374), as well as caused decreased expression of hepcidin (606464) compared to controls. These hypomorphic alleles could explain the milder neurologic phenotype, which allowed for sufficiently long survival for the iron overload phenotype to manifest.; Changed publications: 22305531, 24357517, 24706016, 26545172, 33333793, 32694024, 34875027; Changed phenotypes: Multiple congenital anomalies-hypotonia-seizures syndrome 2, MIM# 300868, MONDO:0010466, Neurodevelopmental disorder with epilepsy and haemochromatosis, MIM# 301072 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.12728 | TRAPPC10 |
Naomi Baker gene: TRAPPC10 was added gene: TRAPPC10 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: TRAPPC10 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: TRAPPC10 were set to PMID: 35298461; 30167849 Phenotypes for gene: TRAPPC10 were set to neurodevelopmental disorder (MONDO:0700092), TRAPPC10-related Review for gene: TRAPPC10 was set to GREEN Added comment: PMID: 35298461 – two Pakistani families reported with homozygous variants. Family 1 has frameshift variant in 8 affected individual and family 2 has missense variant in 2 affected individuals. Patients present with microcephaly, short stature, hypotonia, severe ID and behavioural abnormalities. Seizures also reported in 4/10 individuals. Paper also reported brain abnormalities in null mouse model and other functional in transfected cell lines. PMID: 30167849 – initial report of family 2 above. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.12722 | SLC35B2 |
Melanie Marty changed review comment from: 2 x individuals with homozygous variants (c.1218_1220del and c.1224_1225del) in SLC35B2. Phenotypes included pre- and postnatal growth retardation, scoliosis, severe motor and intellectual disabilities and hypomyelinating leukodystrophy. Functional analysis on patient cells showed that the variants result in a decreased expression of mRNA and affect protein subcellular localization leading to functional impairment of the protein. Sources: Literature; to: 2 x individuals with homozygous variants (c.1218_1220del and c.1224_1225del) in SLC35B2. Phenotypes included pre- and postnatal growth retardation, scoliosis, severe motor and intellectual disabilities and hypomyelinating leukodystrophy. Functional analysis on patient cells showed that the variants result in a decreased expression of mRNA and affect protein subcellular localization leading to functional impairment of the protein. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.12714 | SLC35B2 |
Melanie Marty gene: SLC35B2 was added gene: SLC35B2 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: SLC35B2 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: SLC35B2 were set to PMID: 35325049 Phenotypes for gene: SLC35B2 were set to chondrodysplasia with hypomyelinating leukodystrophy, intellectual disability Review for gene: SLC35B2 was set to AMBER Added comment: 2 x individuals with homozygous variants (c.1218_1220del and c.1224_1225del) in SLC35B2. Phenotypes included pre- and postnatal growth retardation, scoliosis, severe motor and intellectual disabilities and hypomyelinating leukodystrophy. Functional analysis on patient cells showed that the variants result in a decreased expression of mRNA and affect protein subcellular localization leading to functional impairment of the protein. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.12378 | TAMM41 |
Bryony Thompson gene: TAMM41 was added gene: TAMM41 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: TAMM41 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: TAMM41 were set to 35321494; 29253589 Phenotypes for gene: TAMM41 were set to inborn mitochondrial metabolism disorder MONDO:0004069; hypotonia; developmental delay; myopathy; ptosis Review for gene: TAMM41 was set to GREEN Added comment: Three unrelated individuals with mitochondrial disease that share clinical features, including lethargy at birth, hypotonia, developmental delay, myopathy, and ptosis with biallelic variants. Tissue-specific observations on OXPHOS were identified, cardiolipin levels were unchanged in subject fibroblasts but significantly decreased in the skeletal muscle of affected individuals. The missense variants identified were defective in yeast models. In an in vitro cell model knockdown of TAMM41 resulted in decreased mitochondrial CDP diacylglycerol synthase activity, decreased cardiolipin levels and a decrease in oxygen consumption. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.12159 | ADH1B | Elena Savva Phenotypes for gene: ADH1B were changed from to Aerodigestive tract cancer, squamous cell, alcohol-related, protection against} MIM#103780; {Alcohol dependence, protection against} MIM#103780 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.12155 | ADH1B | Elena Savva reviewed gene: ADH1B: Rating: RED; Mode of pathogenicity: None; Publications: ; Phenotypes: Aerodigestive tract cancer, squamous cell, alcohol-related, protection against} MIM#103780, {Alcohol dependence, protection against} MIM#103780; Mode of inheritance: Unknown | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.12152 | CASP8 |
Ain Roesley changed review comment from: Boderline red/amber 1 family (the 2nd family reported in PMID:25814141 was found to be distantly related to the one in PMID:12353035) Mice with targeted T cell and B cell caspase-8 deficiency present normal thymocyte development but a marked decrease in peripheral blood T-cells. Besides, when challenged with the lymphocytic choriomeningitis virus (LCMV), these animals showed a significantly impaired immune response to the infection that included impaired CD8 cell expansion and an abrogated ability to generate virus-specific CD8+ cytotoxic T-cells.; to: Borderline red/amber 1 family (the 2nd family reported in PMID:25814141 was found to be distantly related to the one in PMID:12353035) Mice with targeted T cell and B cell caspase-8 deficiency present normal thymocyte development but a marked decrease in peripheral blood T-cells. Besides, when challenged with the lymphocytic choriomeningitis virus (LCMV), these animals showed a significantly impaired immune response to the infection that included impaired CD8 cell expansion and an abrogated ability to generate virus-specific CD8+ cytotoxic T-cells. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.11975 | TEAD1 |
Zornitza Stark changed review comment from: Sveinsson chorioretinal atrophy (SCRA) is characterized by bilateral, well-defined, tongue-shaped strips of atrophic retina and choroid that extend from the optic nerve into the peripheral ocular fundus. The lesions may be evident at birth and usually progress at a variable rate, sometimes leading to central visual loss. Separate small distinct circular atrophic lesions are observed in the peripheral ocular fundus in some patients. Congenital anterior polar cataracts are found in approximately 25% of affected individuals. The vast majority of reported cases were of Icelandic origin but the characteristic clinical picture of SCRA is also described in patients of non-Icelandic descent. The variant reported in the Icelanding population is (c.1261T>C, p.Tyr421His), another variant at same position c.1261T>A, p.Tyr421Asn also reported in non-Icelandic family. Functional data supports gene-disease association.; to: Sveinsson chorioretinal atrophy (SCRA) is characterized by bilateral, well-defined, tongue-shaped strips of atrophic retina and choroid that extend from the optic nerve into the peripheral ocular fundus. The lesions may be evident at birth and usually progress at a variable rate, sometimes leading to central visual loss. Separate small distinct circular atrophic lesions are observed in the peripheral ocular fundus in some patients. Congenital anterior polar cataracts are found in approximately 25% of affected individuals. The vast majority of reported cases were of Icelandic origin but the characteristic clinical picture of SCRA is also described in patients of non-Icelandic descent. The variant reported in the Icelanding population is (c.1261T>C, p.Tyr421His), another variant at same position c.1261T>A, p.Tyr421Asn also reported in non-Icelandic family. A de novo nonsense variant has also been reported in a case with Aicardi syndrome with infantile spasms, agenesis of the corpus callosum, and chorioretinal lacunae. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.11466 | IRF8 | Zornitza Stark Phenotypes for gene: IRF8 were changed from to Immunodeficiency 32A, mycobacteriosis, autosomal dominant, MIM# 614893; Immunodeficiency 32B, monocyte and dendritic cell deficiency, autosomal recessive, MIM# 226990 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.11463 | IRF8 | Zornitza Stark reviewed gene: IRF8: Rating: GREEN; Mode of pathogenicity: None; Publications: 21524210, 27893462, 29128673, 28162909, 25122610; Phenotypes: Immunodeficiency 32A, mycobacteriosis, autosomal dominant, MIM# 614893, Immunodeficiency 32B, monocyte and dendritic cell deficiency, autosomal recessive, MIM# 226990; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.11163 | JAG1 |
Zornitza Stark changed review comment from: Two unrelated families reported with CMT type 2. Affected individuals in both families exhibited severe vocal fold paresis, a rare feature of peripheral nerve disease that can be life-threatening. Studies of mutant protein posttranslational modification and localization indicated that the mutations (p.Ser577Arg, p.Ser650Pro) impair protein glycosylation and reduce JAG1 cell surface expression. Mice harboring heterozygous CMT2-associated mutations exhibited mild peripheral neuropathy, and homozygous expression resulted in embryonic lethality by midgestation. Pre-existing rat model. Sources: Literature; to: Association with Alagille is very well established. Two unrelated families reported with CMT type 2. Affected individuals in both families exhibited severe vocal fold paresis, a rare feature of peripheral nerve disease that can be life-threatening. Studies of mutant protein posttranslational modification and localization indicated that the mutations (p.Ser577Arg, p.Ser650Pro) impair protein glycosylation and reduce JAG1 cell surface expression. Mice harboring heterozygous CMT2-associated mutations exhibited mild peripheral neuropathy, and homozygous expression resulted in embryonic lethality by midgestation. Pre-existing rat model. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.11135 | RPA1 | Zornitza Stark Phenotypes for gene: RPA1 were changed from Bone marrow failure; T- and B-cell lymphopaenia; pulmonary fibrosis; skin manifestations; short telomeres to Pulmonary fibrosis and/or bone marrow failure, telomere-related, 6, MIM# 619767; Bone marrow failure; T- and B-cell lymphopaenia; pulmonary fibrosis; skin manifestations; short telomeres | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.11134 | RPA1 | Zornitza Stark edited their review of gene: RPA1: Changed phenotypes: Pulmonary fibrosis and/or bone marrow failure, telomere-related, 6, MIM# 619767, Bone marrow failure, T- and B-cell lymphopaenia, pulmonary fibrosis, skin manifestations, short telomeres | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.11099 | CPSF3 |
Belinda Chong gene: CPSF3 was added gene: CPSF3 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: CPSF3 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: CPSF3 were set to 35121750 Phenotypes for gene: CPSF3 were set to Intellectual disability syndrome Review for gene: CPSF3 was set to GREEN Added comment: study of a deficit of observed homozygous carriers of missense variants, versus an expected number in a set of 153,054 chip-genotyped Icelanders, to identify potentially pathogenic genotypes Six homozygous carriers of missense variants in CPSF3 show severe intellectual disability, seizures, microcephaly, and abnormal muscle tone. - Four identified through Icelandic geneology (p.Gly468Glu), three carrier couples total of four children who had died prematurely. Tested archival samples for two of these children, and confirm a homozygous genotype. - Two of Mexican descent (p.Ile354Thr), first-degree cousins Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.11092 | CRLS1 |
Michelle Torres gene: CRLS1 was added gene: CRLS1 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: CRLS1 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: CRLS1 were set to 35147173 Phenotypes for gene: CRLS1 were set to Mitochondrial disease MONDO:0044970 CRLS1-related Added comment: - Three families (4 individuals) with cardiolipin deficiency. - Two families (one consanguineous with 2 affected siblings) with homozygous the p.(Ile109Asn) had infantile progressive encephalopathy, bull’s eye maculopathy, auditory neuropathy, diabetes insipidus, autonomic instability, cardiac defects and early death. - The fourth individual cHet p.(Ala172Asp) and p.(Leu217Phe) presented with chronic encephalopathy with neurodevelopmental regression, congenital nystagmus with decreased vision, sensorineural hearing loss, failure to thrive and acquired microcephaly. - Functional studies on patient cells showed increased levels of the substrate of CRLS1 and impaired mitochondrial morphology and biogenesis Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.11092 | NAV2 |
Dean Phelan gene: NAV2 was added gene: NAV2 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: NAV2 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: NAV2 were set to PMID:35218524 Phenotypes for gene: NAV2 were set to Developmental delay; cerebellar hypoplasia; cerebellar dysplasia Review for gene: NAV2 was set to AMBER Added comment: PMID:35218524 - Two compound heterozygous LOF variants identified in one female with developmental delay and a diagnosis of cerebellar hypoplasia and dysplasia. Functional studies showed cellular migration deficits. Hypomorphic mouse model revealed developmental anomalies including cerebellar hypoplasia and dysplasia, corpus callosum hypo-dysgenesis, and agenesis of the olfactory bulbs. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.11076 | PPP2R3C |
Zornitza Stark gene: PPP2R3C was added gene: PPP2R3C was added to Mendeliome. Sources: Literature Mode of inheritance for gene: PPP2R3C was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: PPP2R3C were set to 30893644; 34714774; 34750818 Phenotypes for gene: PPP2R3C were set to Gonadal dysgenesis, dysmorphic facies, retinal dystrophy, and myopathy, OMIM # 618419 Review for gene: PPP2R3C was set to GREEN Added comment: Gonadal dysgenesis, dysmorphic facies, retinal dystrophy, and myopathy (GDRM) is characterized by 46,XY complete gonadal dysgenesis in association with extragonadal anomalies, low birth weight, typical facial gestalt, rod and cone dystrophy, sensorineural hearing loss, omphalocele, anal atresia, renal agenesis, skeletal abnormalities, dry and scaly skin, severe myopathy, and neuromotor delay. 11 unrelated families with syndromic complete gonadal dysgenesis. 9 families had 46,XY females with complete gonadal dysgenesis, but 2 families had 46,XX patients with hypergonadotropic hypogonadism, nonvisualized gonads, primary amenorrhea, and absence of secondary sexual characteristics. Variants segregated with disease in each family and were not found in ethnically matched controls or in public variant databases. The heterozygous fathers exhibited morphologic abnormalities of spermatozoa and reduced fertility. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.11071 | CHKA |
Konstantinos Varvagiannis gene: CHKA was added gene: CHKA was added to Mendeliome. Sources: Literature Mode of inheritance for gene: CHKA was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: CHKA were set to 35202461 Phenotypes for gene: CHKA were set to Abnormal muscle tone; Global developmental delay; Intellectual disability; Seizures; Microcephaly; Abnormality of movement; Abnormality of nervous system morphology; Short stature Penetrance for gene: CHKA were set to Complete Review for gene: CHKA was set to GREEN Added comment: Klöckner (2022 - PMID: 35202461) describe the phenotype of 6 individuals (from 5 unrelated families) harboring biallelic CHKA variants. Shared features incl. abnormal muscle tone(6/6 - hypertonia or hypotonia, 3/6 each), DD/ID (6/6,severe in 4, severe/profound in 2), epilepsy (6/6 - onset: infancy - 3y2m | epileptic spasms or GS at onset), microcephaly (6/6), movement disorders (3/6 - incl. dyskinesia, rigidity, choreoatetotic movements). 2/5 individuals exhibited MRI abnormalities, notably hypomyelination. Short stature was observed in 4/6. Eventual previous genetic testing was not discussed. Exome sequencing (quattro ES for 2 sibs, trio ES for 1 individual, singleton for 3 probands) revealed biallelic CHKA variants in all affected individuals. Sanger sequencing was performed for confirmation and segregation studies. Other variants (in suppl.) were not deemed to be causative for the neurodevelopmental phenotype. 3 different missense, 1 start-loss and 1 truncating variant were identified, namely (NM_0012772.2): - c.421C>T/p.(Arg141Trp) [3 hmz subjects from 2 consanguineous families], - c.580C>T/p.Pro194Ser [1 hmz individual born to consanguineous parents], - c.2T>C/p.(Met1?) [1 hmz individual born to related parents], - c.14dup/p.(Cys6Leufs*19) in trans with c.1021T>C/p.(Phe341Leu) in 1 individual. CHKA encodes choline kinase alpha, an enzyme catalyzing the first step of phospholipid synthesis in the Kennedy pathway. The pathway is involved in de novo synthesis of glycerophospholipids, phosphatidylcholine and phosphatidylethanolamine being the most abundant in eukaryotic membranes. CHKA with its paralog (CHKB) phosphorylates either choline or ethanolamine to phosphocholine or phosphoethanolamine respectively with conversion of ATP to ADP. As the authors comment, biallelic pathogenic variants in CHKB cause a NDD with muscular dystrophy, hypotonia, ID, microcephaly and structural mitochondrial anomalies (MIM 602541). [Prominent mitochondrial patterning was observed in a single muscle biopsy available from an individual with biallelic CHKA variants]. Other disorders of the Kennedy pathway (due to biallelic PCYT2, SELENOI, PCYT1A variants) present with overlapping features incl. variable DD/ID (no-severe), microcephaly, seizures, visual impairment etc. CHKA variants were either absent or observed once in gnomAD, affected highly conserved AAs with multiple in silico predictions in favor of a deleterious effect. In silico modeling suggests structural effects for several of the missense variants (Arg141Trp, Pro194Ser presumably affect ADP binding, Phe341 lying close to the binding site of phosphocholine). Each of the missense variants was expressed in yeast cells and W. Blot suggested expression at the expected molecular weight at comparative levels. The 3 aforementioned variants exhibited reduced catalytic activity (20%, 15%, 50% respectively). NMD is thought to underly the deleterious effect of the frameshift one (not studied). The start-loss variant is expected to result in significantly impaired expression and protein function as eventual utilization of the next possible start codon - occurring at position 123 - would remove 26% of the protein. Chka(-/-) is embryonically lethal in mice, suggesting that complete loss is not compatible with life. Reduction of choline kinase activity by 30% in heterozygous mice did not appear to result in behavioral abnormalities although this was not studied in detail (PMID cited: 18029352). Finally, screening of 1566 mouse lines identified 198 genes whose disruption yields neuroanatomical phenotypes, Chka(+/-) mice being among these (PMID cited: 31371714). There is no associated phenotype in OMIM, Gene2Phenotype or SysID. Overall this gene can be considered for inclusion in the ID and epilepsy panes with green or amber rating (>3 individuals, >3 variants, variant studies, overlapping phenotype of disorders belonging to the same pathway, etc). Consider also inclusion in the microcephaly panel (where available this seemed to be of postnatal onset). Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.11040 | C17orf53 |
Zornitza Stark gene: C17orf53 was added gene: C17orf53 was added to Mendeliome. Sources: Expert Review Mode of inheritance for gene: C17orf53 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: C17orf53 were set to 34707299; 31467087 Phenotypes for gene: C17orf53 were set to Primary ovarian insufficiency Review for gene: C17orf53 was set to AMBER Added comment: PMID: 34707299. Homozygous LOF variant in individual with primary ovarian insufficiency PMID: 31467087. Mice with targeted mutations in Hrob are infertile due to depletion of germ cells. Sources: Expert Review |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.11032 | TNFRSF10B | Zornitza Stark Phenotypes for gene: TNFRSF10B were changed from to Squamous cell carcinoma, head and neck MIM#275355 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.11020 | OGG1 | Zornitza Stark Phenotypes for gene: OGG1 were changed from to Renal cell carcinoma, clear cell, somatic MIM#144700 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.11004 | TNFRSF10B | Paul De Fazio reviewed gene: TNFRSF10B: Rating: RED; Mode of pathogenicity: None; Publications: 9721851; Phenotypes: Squamous cell carcinoma, head and neck MIM#275355; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal; Current diagnostic: yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.11004 | OGG1 | Paul De Fazio reviewed gene: OGG1: Rating: RED; Mode of pathogenicity: None; Publications: 10987279, 29305130; Phenotypes: Renal cell carcinoma, clear cell, somatic MIM#144700; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown; Current diagnostic: yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10953 | FUZ |
Ain Roesley gene: FUZ was added gene: FUZ was added to Mendeliome. Sources: Literature Mode of inheritance for gene: FUZ was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: FUZ were set to 21840926 Phenotypes for gene: FUZ were set to {Neural tube defects, susceptibility to} MIM#182940 Penetrance for gene: FUZ were set to unknown Review for gene: FUZ was set to RED gene: FUZ was marked as current diagnostic Added comment: Spina bifida cohort. Negative for VANGL1 and VANGL2, only FUZ was sequenced. Variants identified in 5 individuals. Arg404Gln (39 hets in gnomAD) and Asp354Tyr (6 hets in gnomAD). These variants are listed as risk factor in ClinVar Pro39Ser (absent in gnomAD) was de novo by parental sanger and showed reduced cell mobility on scratch assays. 2 other variants Gly140Glu and Ser142Thr were deemed non-causative due to poor in silicos and conservation Finally, hom KO mouse models were done to prove neural tube defects Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10914 | RPL8 |
Bryony Thompson gene: RPL8 was added gene: RPL8 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: RPL8 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: RPL8 were set to 25424902; 34961992 Phenotypes for gene: RPL8 were set to Diamond-Blackfan anemia MONDO:0015253 Review for gene: RPL8 was set to AMBER Added comment: 2 unrelated DBA cases with de novo missense variants, and functional studies in lymphoblastoid cells and yeast models demonstrate the 2 missense variants are functionally deficient proteins that affect ribosome production. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10829 | MYO5A | Zornitza Stark Phenotypes for gene: MYO5A were changed from to Griscelli syndrome, type 1 MIM#214450 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10812 | MYO5A | Ain Roesley reviewed gene: MYO5A: Rating: GREEN; Mode of pathogenicity: None; Publications: 32275080, 22711375, 25283056; Phenotypes: Griscelli syndrome, type 1 MIM#214450; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal; Current diagnostic: yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10796 | KIF26B |
Zornitza Stark gene: KIF26B was added gene: KIF26B was added to Mendeliome. Sources: Expert Review Mode of inheritance for gene: KIF26B was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: KIF26B were set to 30151950 Phenotypes for gene: KIF26B were set to Progressive microcephaly, pontocerebellar hypoplasia, and arthrogryposis Review for gene: KIF26B was set to RED Added comment: 1 report only of infant with progressive microcephaly, pontocerebellar hypoplasia, and arthrogryposis secondary to the involvement of anterior horn cells and ventral (motor) nerves. Whole exome sequencing on the trio identified a de novo KIF26B missense variant (p.Gly546Ser). Functional analysis of the variant protein in cultured cells revealed a reduction in the KIF26B protein's ability to promote cell adhesion, a defect that potentially contributes to its pathogenicity. Sources: Expert Review |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10793 | CHP1 |
Zornitza Stark gene: CHP1 was added gene: CHP1 was added to Mendeliome. Sources: Expert Review Mode of inheritance for gene: CHP1 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: CHP1 were set to 29379881; 32787936 Phenotypes for gene: CHP1 were set to Spastic ataxia 9, autosomal recessive, MIM #618438 Review for gene: CHP1 was set to GREEN Added comment: 2 different consanguineous families with 2 affected siblings with ataxia (1 paediatric onset, 1 adult onset). 3 of the patients had cerebellar atrophy. WES identified homozygous variants in CHP1 gene in both families (K19del and Arg91Cys), which segregated with the disorder in the family. Decreased CHP1 protein on IHC of cerebellar tissue in family with Arg91Cys variant. In vitro functional expression studies in HEK293 cells showed that the K19del mutation resulted in decreased protein expression, with normal levels of transcript, suggesting defects in protein stability. The mutant protein formed massive protein aggregates in transfected neuronal cell bodies and neurite-like projections, whereas the wildtype protein showed a more uniform distribution. The mutant protein altered CHP1 association into functional complexes and impaired membrane localization of the Na+/H+ transporter NHE1. The findings indicated that the CHP1 mutation likely causes ataxia in an NHE1-dependent manner, resembling the mechanism observed in the Chp1 vacillator mutant mouse. Sources: Expert Review |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10758 | IKZF2 |
Zornitza Stark gene: IKZF2 was added gene: IKZF2 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: IKZF2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: IKZF2 were set to 34920454 Phenotypes for gene: IKZF2 were set to Immune dysregulation Review for gene: IKZF2 was set to GREEN Added comment: Six individuals with systemic lupus erythematosus, immune thrombocytopenia or EBV-associated haemophagocytic lymphohistiocytosis reported with variants in this gene. Patients exhibited hypogammaglobulinaemia, decreased number of T-follicular helper and NK-cells. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10561 | ATP5G3 |
Naomi Baker edited their review of gene: ATP5G3: Added comment: Note that HGNC approved gene name is ATP5MC3. PMID: 34636445 reports a missense variant identified in a large single-family pedigree with dystonia and spastic paraplegia. The variant was identified via exome sequencing of the proband and a distant cousin, focussing on variants within the previously determined linkage region. The identical missense variant was also identified in a patient with childhood onset dystonic syndrome and was shown to be de novo. Functional studies of fibroblast cell lines from affected father (HSP) and proband of large family demonstrated decreased complex V function. A drosophila model containing the missense variant had reduced mobility and reduced complex V activity. PMID: 34954817 reports de novo monoallelic missense variants in three individuals, however one of these individuals was reported in above paper. The other two patients were: (1) a-15-year-old girl with milestone delay, pyramidal signs, and generalized dystonia with prominent upper-body involvement, and (2) a 6-year-old boy with delayed psychomotor development, lower-extremity spasticity, and elevated blood lactate levels; Changed rating: GREEN; Changed publications: PMID: 34636445, 34954817 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10558 | ATP5G3 |
Naomi Baker gene: ATP5G3 was added gene: ATP5G3 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: ATP5G3 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: ATP5G3 were set to PMID: 34636445 Phenotypes for gene: ATP5G3 were set to Dystonia, early-onset, and/or spastic paraplegia, MIM#619681 Review for gene: ATP5G3 was set to AMBER Added comment: Note that new gene name is ATP5MC3. Paper reports the same missense variant identified in a large single-family pedigree with dystonia and spastic paraplegia, and also de novo in a patient with childhood onset dystonic syndrome. Drosophila model with missense variant also studied. Functional studies of fibroblast cells lines from affected father and proband demonstrated decreased complex V function. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10552 | CRACR2A |
Dean Phelan gene: CRACR2A was added gene: CRACR2A was added to Mendeliome. Sources: Literature Mode of inheritance for gene: CRACR2A was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: CRACR2A were set to PMID:34908525 Phenotypes for gene: CRACR2A were set to Late onset combined immunodeficiency Review for gene: CRACR2A was set to AMBER Added comment: PMID:34908525 - one patient compound het (missense and PTC) with late onset combined immunodeficiency (current chest infections, panhypogammaglobulinemia and CD4+T cell lymphopenia). Functional studies showed defective JNK phosphorylation, defective SOCE and impaired cytokine production. Further search did not identify any additional publications. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10550 | PAK2 |
Arina Puzriakova gene: PAK2 was added gene: PAK2 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: PAK2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: PAK2 were set to 33693784 Phenotypes for gene: PAK2 were set to Knobloch 2 syndrome Review for gene: PAK2 was set to RED Added comment: Antonarakis et al., 2021 (PMID: 33693784) reported two affected siblings from a non-consanguineous New Zealand family. Both had retinal detachment and interstitial parenchymal pulmonary changes on chest X-rays, but only one child had additional significant features such as cataract, posterior encephalocele, severe DD/ID with ASD, and epilepsy. WES revealed a heterozygous PAK2 variant (c.1303 G>A, p.Glu435Lys) in both individuals that apparently occurred de novo indicating parental germ-line mosaicism; however, mosaicism could not be detected by deep sequencing of blood parental DNA. Functional studies showed that the variant, located in the kinase domain, results in a partial loss of the kinase activity. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10549 | TBX2 | Zornitza Stark Phenotypes for gene: TBX2 were changed from to Vertebral anomalies and variable endocrine and T-cell dysfunction - MIM#618223 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10542 | TBX2 | Krithika Murali reviewed gene: TBX2: Rating: AMBER; Mode of pathogenicity: None; Publications: 29726930, 23727221, 20635360, 30223900; Phenotypes: Vertebral anomalies and variable endocrine and T-cell dysfunction - MIM#618223; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10518 | PRDM9 |
Zornitza Stark gene: PRDM9 was added gene: PRDM9 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: PRDM9 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: PRDM9 were set to 34257419 Phenotypes for gene: PRDM9 were set to Inherited primary ovarian failure MONDO:0019852 Review for gene: PRDM9 was set to GREEN Added comment: The primordial follicle pool is determined by the meiosis process, which is initiated by programmed DNA double strand breaks (DSB) and homologous recombination. PRDM9 is a meiosis-specific histone H3 methyltransferase and a major determinant of meiotic recombination hotspots in mammals. 3 pathogenic heterozygous variants in PRDM9 identified in 4 patients with POI. Functional studies showed the variants in PRDM9 impaired its methyltransferase activity. Prdm9+/- mice were subfertile, and showed increased percentage of germ cells at abnormal pachytene stage with decreased number of PRDM9-dependent DSBs and insufficient recombination. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10510 | NAA20 |
Zornitza Stark gene: NAA20 was added gene: NAA20 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: NAA20 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: NAA20 were set to 34230638 Phenotypes for gene: NAA20 were set to Intellectual disability; Microcephaly; Neurodevelopmental disorder MONDO:0700092 Review for gene: NAA20 was set to GREEN Added comment: 2 consanguineous families with 5 affected individuals with developmental delay, intellectual disability, and microcephaly (-2-4SD). Exome and genome sequencing identified 2 different homozygous variants in NAA20 gene (p.Met54Val and p.Ala80Val), and segregated with affected individuals. N-terminal acetyltransferases modify proteins by adding an acetyl moiety to the first amino acid and are vital for protein and cell function. The NatB complex acetylates 20% of the human proteome and is composed of the catalytic subunit NAA20 and the auxiliary subunit NAA25. Both NAA20-M54V and NAA20-A80V were impaired in their capacity to form a NatB complex with NAA25, and in vitro acetylation assays revealed reduced catalytic activities toward different NatB substrates. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10411 | ING1 | Zornitza Stark Phenotypes for gene: ING1 were changed from to Squamous cell carcinoma, head and neck, somatic, MIM# 275355 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10410 | ING1 | Zornitza Stark edited their review of gene: ING1: Changed phenotypes: Squamous cell carcinoma, head and neck, somatic, MIM# 275355 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10257 | MIB1 |
Chern Lim changed review comment from: Luxan 2013 (PMID: 23314057): - V943F, seg with LVNC in 1 fam, (gnomADv2: 43 hets). - R530X, seg with LVNC in 1 fam, (gv2: 13 hets). Li 2018 (PMID: 30322850): - in 4 CHD patients: p.Q237H (gv2v3 absent), p.W271G (gv2v3 absent), p.S520R (v2 5 hets) and p.T312Kfs*55 (NMD-pred, absent but many comparables in gnomAD). - HEK293T cells transfection studies showed: T312Kfs*55 and W271G strongly impaired MIB1 function on substrate ubiquitination, while Q237H and S520R had slight or no obvious changes. Interaction between MIB1 and JAG1 is severely interrupted by p.T312Kfs*55 and p.W271G, but not really in the other 2 missense. - Overexpression of wt or mutant in zebrafish all resulted in dysmorphic pheno, therefore not informative. DCM-association = none by Clingen (9/4/2020), ref Luxan 2013 and other pprs, and mentioned gnomAD had too many LoF variants. De Ligt 2012 (PMID: 23033978): de novo R174H (gnomADv2: 7 hets), indvl with severe ID who also has a de novo R47* in WAC (an AD ID gene with LoF established, variant is P in ClinVar), no other pt-specific pheno provided. Kaplanis 2021 (PMID: 33057194): Developmental disorders paper. - 2 missense variants, de novo: 18-19383967-G-A (p.Glu491Lys, gv2 1 het, gv3 absent, GeneDx), 18-19378124-C-T (Thr391Ile, gv2v3 absent, DDD, de novo, no mention of heart pheno). - Of 6 PTVs, 4 had at least 10 hets each in gnomADv2.; to: Luxan 2013 (PMID: 23314057): - V943F, seg with LVNC in 1 fam, (gnomADv2: 43 hets). - R530X, seg with LVNC in 1 fam, (gv2: 13 hets). Li 2018 (PMID: 30322850): - in 4 CHD patients: p.Q237H (gv2v3 absent), p.W271G (gv2v3 absent), p.S520R (v2 5 hets) and p.T312Kfs*55 (NMD-pred, absent but many comparables in gnomAD). - HEK293T cells transfection studies showed: T312Kfs*55 and W271G strongly impaired MIB1 function on substrate ubiquitination, while Q237H and S520R had slight or no obvious changes. Interaction between MIB1 and JAG1 is severely interrupted by p.T312Kfs*55 and p.W271G, but not really in the other 2 missense. - Overexpression of wt or mutant in zebrafish all resulted in dysmorphic pheno, therefore not informative. DCM-association = none by Clingen (9/4/2020), ref Luxan 2013 and other pprs, and mentioned gnomAD had too many LoF variants. De Ligt 2012 (PMID: 23033978): de novo R174H (gnomADv2: 7 hets), indvl with severe ID who also has a de novo R47* in WAC (an AD ID gene with LoF established, variant is P in ClinVar), no other pt-specific pheno provided. Kaplanis 2021 (PMID: 33057194): Developmental disorders paper. - 2 missense variants, de novo: 18-19383967-G-A (p.Glu491Lys, gv2 1 het, gv3 absent), 18-19378124-C-T (Thr391Ile, gv2v3 absent, DDD, de novo, no mention of heart pheno). - Of 6 PTVs, 4 had at least 10 hets each in gnomADv2. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10253 | REL | Zornitza Stark Phenotypes for gene: REL were changed from Combined immunodeficiency; T cells: normal, decreased memory CD4, poor proliferation; B cells: low, mostly naive, few switched memory B cells, impaired proliferation; Recurrent infections with bacteria, mycobacteria, salmonella and opportunistic organisms; Defective innate immunity to Immunodeficiency 92, MIM# 619652; Combined immunodeficiency; T cells: normal, decreased memory CD4, poor proliferation; B cells: low, mostly naive, few switched memory B cells, impaired proliferation; Recurrent infections with bacteria, mycobacteria, salmonella and opportunistic organisms; Defective innate immunity | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10250 | REL |
Zornitza Stark changed review comment from: Second unrelated individual reported, homozygous splice site variant. Immunodeficiency-92 (IMD92) is an autosomal recessive primary immunodeficiency characterized by the onset of recurrent infections in infancy or early childhood. Infectious agents are broad, including bacterial, viral, fungal, and parasitic, including Cryptosporidium and Mycobacteria. Patient lymphocytes show defects in both T- and B-cell proliferation, cytokine secretion, and overall function, and there is also evidence of dysfunction of NK, certain antigen-presenting cells, and myeloid subsets.; to: Second unrelated individual reported, with a different homozygous splice site variant. Immunodeficiency-92 (IMD92) is an autosomal recessive primary immunodeficiency characterized by the onset of recurrent infections in infancy or early childhood. Infectious agents are broad, including bacterial, viral, fungal, and parasitic, including Cryptosporidium and Mycobacteria. Patient lymphocytes show defects in both T- and B-cell proliferation, cytokine secretion, and overall function, and there is also evidence of dysfunction of NK, certain antigen-presenting cells, and myeloid subsets. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10250 | REL |
Zornitza Stark edited their review of gene: REL: Added comment: Second unrelated individual reported, homozygous splice site variant. Immunodeficiency-92 (IMD92) is an autosomal recessive primary immunodeficiency characterized by the onset of recurrent infections in infancy or early childhood. Infectious agents are broad, including bacterial, viral, fungal, and parasitic, including Cryptosporidium and Mycobacteria. Patient lymphocytes show defects in both T- and B-cell proliferation, cytokine secretion, and overall function, and there is also evidence of dysfunction of NK, certain antigen-presenting cells, and myeloid subsets.; Changed rating: AMBER; Changed publications: 31103457, 34623332; Changed phenotypes: Immunodeficiency 92, MIM# 619652, Combined immunodeficiency, T cells: normal, decreased memory CD4, poor proliferation, B cells: low, mostly naive, few switched memory B cells, impaired proliferation, Recurrent infections with bacteria, mycobacteria, salmonella and opportunistic organisms, Defective innate immunity |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10087 | HELQ | Bryony Thompson commented on gene: HELQ: A single POI heterozygous for a frameshift variant (c.3095delA;p.Tyr1032Serfs*4), and a null mouse model (both homozygous and heterozygous) with subfertility and germ cell attrition. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10066 | SNIP1 | Zornitza Stark edited their review of gene: SNIP1: Added comment: A single (founder) variant NM_024700.4:c.1097A>G, p.(Glu366Gly) has been reported in over 30 cases of Psychomotor retardation, epilepsy, and craniofacial dysmorphism OMIM:614501 in the Amish community (PMIDs: 22279524; 34570759). Cases are homozygous for this variant and unaffected members of the families are heterozygous or wt. Overexpression of the equivalent mouse variant in mouse inner medullary collecting duct cells, resulted in a more aggregated appearance in the nucleus compared to wildtype. The variant protein maybe unstable as Western blots showed reduced levels of the variant protein (PMID: 22279524). Whole transcriptomic analysis of patient blood was performed in PMID: 34570759. This revealed 11 upregulated and 32 downregulated genes, of which 24 had previously been associated with neurological disease.; Changed rating: AMBER; Changed publications: 22279524, 34570759 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10052 | RPA1 |
Zornitza Stark gene: RPA1 was added gene: RPA1 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: RPA1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: RPA1 were set to 34767620 Phenotypes for gene: RPA1 were set to Bone marrow failure; T- and B-cell lymphopaenia; pulmonary fibrosis; skin manifestations; short telomeres Mode of pathogenicity for gene: RPA1 was set to Loss-of-function variants (as defined in pop up message) DO NOT cause this phenotype - please provide details in the comments Review for gene: RPA1 was set to GREEN Added comment: 4 individuals with gain of function variants with bone marrow failure, myelodysplastic syndrome, T- and B-cell lymphopaenia, pulmonary fibrosis, or skin manifestations reported. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10041 | SMPX | Zornitza Stark edited their review of gene: SMPX: Added comment: PMID 33974137: Four different missense variants were identified in ten patients from nine families in five different countries. Haplotype analysis of patients with similar ancestry revealed two different founder mutations in Southern Europe and France, indicating that the prevalence in these populations may be higher. Clinical features: adult-onset, usually distal more than proximal limb muscle weakness, slowly progressing over decades with preserved walking. Lower limb muscle imaging showed a characteristic pattern of muscle involvement and fatty degeneration. Histopathological and electron microscopic analysis of patient muscle biopsies revealed myopathic findings with rimmed vacuoles and the presence of sarcoplasmic inclusions, some with amyloid-like characteristics. In silico predictions and subsequent cell culture studies showed that the missense mutations increase aggregation propensity of the SMPX protein. In cell culture studies, overexpressed SMPX localized to stress granules and slowed down their clearance.; Changed publications: 21549342, 21549336, 21893181, 22911656, 28542515, 33974137; Changed phenotypes: Deafness, X-linked 4, MIM# 300066, Distal myopathy, adult-onset | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.10013 | ARPC4 |
Bryony Thompson gene: ARPC4 was added gene: ARPC4 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: ARPC4 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: ARPC4 were set to DOI:https://doi.org/10.1016/j.xhgg.2021.100072 Phenotypes for gene: ARPC4 were set to Microcephaly; mild motor delays; significant speech impairment Review for gene: ARPC4 was set to GREEN Added comment: 7 affected individuals from 6 families (gonadal mosaicism was confirmed in the mother of the 2 affected siblings) with a recurrent missense variant (NM_005718.4:c.472C>T; p.R158C). The variant was associated with a decreased amount of F-actin in cells from two affected individuals. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9897 | POLR2C |
Bryony Thompson gene: POLR2C was added gene: POLR2C was added to Mendeliome. Sources: Literature Mode of inheritance for gene: POLR2C was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: POLR2C were set to 34794894; 29367954 Phenotypes for gene: POLR2C were set to Primary ovarian insufficiency Review for gene: POLR2C was set to AMBER Added comment: One family with POI segregating a nonsense variant (p.Lys152Ter) and a case with sporadic POI with a splice region variant (c.206-3C>T). Knockdown of the gene in an embryonic carcinoma cell line resulted in decreased protein production and impaired cell proliferation. Two missense in premature ovarian failure cases submitted to ClinVar by Shandong Provincial Hospital Affiliated to Shandong University (SCV001877131.1, SCV001877153.1). Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9776 | NEBL | Bryony Thompson Added comment: Comment on list classification: Limited gene-disease vailidity, Classification - 09/25/2020 by ClinGen Dilated Cardiomyopathy GCEP. Evidence Summary: NEBL was evaluated for autosomal dominant dilated cardiomyopathy (DCM). Human genetic evidence supporting this gene-disease relationship includes case-level data. Arimura and colleagues (2000, PMID: 11140941) analyzed 83 DCM patients and 311 healthy controls, identifying 4 missense variants of unknown significance (VUSs) in 4 DCM cases. High minor allele frequencies (MAFs) and lack of segregation excluded these variants as evidence. Purevjav and colleagues (2010, PMID: 20951326) investigated a total of 260 DCM patients and 300 unrelated ethnic matched controls by direct DNA sequencing. Authors identified 4 missense VUSs. One of these variants (Q128R) was downgraded in level of evidence due to the lack of segregation. The other 3 variants were not scored because of their MAF. Perrot and colleagues (2016, PMID: 27186169) investigated a total of 389 patients with DCM, HCM, or LVNC, 320 Caucasian sex-matched controls and 192 Caucasian sex-matched blood donors and identified 3 missense VUSs in 4 families. One of these variants was also carried by healthy relatives and therefore was excluded, however this may be explained by reduced penetrance. The 2 other variants lacked segregation as well and therefore were also excluded. In addition, this gene-disease association is supported by animal models. Mastronotaro and colleagues (2015, PMID: 25987543) created a NEBL knockout mice that exhibited normal cardiac function up to 9 months of age but after 2 weeks of transaortic constriction (TAC), these mice showed Z-line widening since the age of 5 months and upregulation of cardiac stress genes (basal and after TAC) However, absence of clinical DCM features in KO-NEBL mice as well as Western Blot analysis which contradicted previous findings by showing a similar protein expression between knockout and wild-type mice, excluding it as evidence. Purevjav and colleagues (2010, PMID: 20951326) generated a transgenic mouse overexpressing WT or mutant NEBL under the control of the α-MyHC promoter (4 variants were tested). Mice overexpressing p.K60N or p.Q128R variants died within 1 year because of severe heart enlargement and heart failure. Mice overexpressing p.G202R or p.A592E were born and developed normally but after 6 months displayed reduced stress tolerance, cardiac enlargement due to left ventricle dilation, myocyte disarray, and interstitial cell infiltration. In summary, there is limited evidence to support this gene-disease relationship. More evidence is needed to support the relationship of NEBL and autosomal dominant DCM. This classification was approved by the ClinGen Dilated Cardiomyopathy Working Group on October 11, 2019 (SOP Version 7). Gene Clinical Validity Standard Operating Procedures (SOP) - SOP7 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9717 | MYO9B | Zornitza Stark Phenotypes for gene: MYO9B were changed from to {Celiac disease, susceptibility to, 4} MIM#609753 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9713 | MYO9B | Paul De Fazio reviewed gene: MYO9B: Rating: RED; Mode of pathogenicity: None; Publications: 16720215, 16423886, 16282976; Phenotypes: {Celiac disease, susceptibility to, 4} MIM#609753; Mode of inheritance: Unknown; Current diagnostic: yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9635 | TOP2B | Zornitza Stark Phenotypes for gene: TOP2B were changed from Autosomal dominant deafness; Antibody deficiency, recurrent infections, facial dysmorphism, limb anomalies; Intellectual disability to Autosomal dominant deafness; B-cell immunodeficiency, distal limb anomalies, and urogenital malformations, MIM# 609296; Intellectual disability | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9634 | TOP2B | Zornitza Stark edited their review of gene: TOP2B: Changed phenotypes: Autosomal dominant deafness, B-cell immunodeficiency, distal limb anomalies, and urogenital malformations, MIM# 609296, Intellectual disability | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9563 | SPRED2 |
Dean Phelan gene: SPRED2 was added gene: SPRED2 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: SPRED2 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: SPRED2 were set to PMID: 34626534 Phenotypes for gene: SPRED2 were set to developmental delay; intellectual disability; cardiac defects; short stature; skeletal anomalies; a typical facial gestalt Review for gene: SPRED2 was set to GREEN Added comment: PMID: 34626534 Homozygosity for three different variants c.187C>T (p.Arg63∗), c.299T>C (p.Leu100Pro), and c.1142_1143delTT (p.Leu381Hisfs∗95) were identified in four subjects from three families. All variants severely affected protein stability, causing accelerated degradation, and variably perturbed SPRED2 functional behaviour. The clinical phenotype of the four affected individuals included developmental delay, intellectual disability, cardiac defects, short stature, skeletal anomalies, and a typical facial gestalt as major features, without the occurrence of the distinctive skin signs characterizing Legius syndrome. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9392 | KCNAB3 |
Daniel Flanagan gene: KCNAB3 was added gene: KCNAB3 was added to Mendeliome. Sources: Expert list Mode of inheritance for gene: KCNAB3 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: KCNAB3 were set to PMID: 32990398 Phenotypes for gene: KCNAB3 were set to febrile seizures; afebrile seizure; genetic epilepsy with febrile seizures plus Review for gene: KCNAB3 was set to RED Added comment: Missense variant identified in a single Han Chinese family with febrile seizures plus. Three affected carriers and one unaffected carrier. Patch clamp functional studies indicates that the variant accelerates the inactivation of the potassium channels. Sources: Expert list |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9383 | KCNQ1OT1 |
Zornitza Stark gene: KCNQ1OT1 was added gene: KCNQ1OT1 was added to Mendeliome. Sources: Expert Review Mode of inheritance for gene: KCNQ1OT1 was set to MONOALLELIC, autosomal or pseudoautosomal, maternally imprinted (paternal allele expressed) Publications for gene: KCNQ1OT1 were set to 22205991; 15372379; 23511928; 30794780; 29377879; 10220444; 32447323; 33177595; 29047350 Phenotypes for gene: KCNQ1OT1 were set to Beckwith-Wiedemann syndrome OMIM:130650; Russell-Silver Syndrome Review for gene: KCNQ1OT1 was set to AMBER Added comment: Limited evidence that isolated intragenic variation in KCNQ1OT1 is definitively associated with a phenotype. KCNQ1OT1 encodes the regulatory antisense non-coding RNA KCNQ1OT1 (KCNQ1 overlapping) and is located within the KCNQ1OT1:TSS DMR (imprinting control region 2; IC2) at 11p15.5. IC2 is located within KCNQ1 intron 10. KCNQ1OT1 is maternally imprinted and paternally expressed. On the paternal chromosome, KCNQ1OT1 is transcribed and represses in cis the flanking imprinted genes, including the growth inhibitor CDKN1C, which is normally transcribed from the maternal allele. In 50% of the BWS patients, loss of methylation (LOM) of IC2 leads to biallelic expression of KCNQ1OT1 and biallelic silencing of CDKN1C (PMID 30635621). Expression is increased in BWS due to IC2 epimutations or paternal UPD. Single nucleotide variants within KCNQ1OT1 have not been definitively associated with human disease. A heterozygous maternally inherited non-coding variant was identified in an individual with isolated omphalocele. This variant was shown to alter the methylation pattern of the imprinted allele (PMID 29047350). Eggerman et al (PMID 32447323) described a 132 base pair deletion within KCNQ1OT1 associated with growth retardation in the case of paternal but not maternal transmission. This intragenic deletion did not affect IC2 methylation. Microdeletions of IC2 involving KCNQ1OT1 on the paternal allele have been identified in a small number of patients with Russell-Silver syndrome. Similarly, microdeletions of IC2 involving KCNQ1OT1 on the maternal allele have been identified in a small number of patients with BWS. These deletions also variably involve KCNQ1 or CDKN1C. LoF in CDKN1C is a known cause of BWS. There is some evidence to suggest that disruption of KCNQ1 prevents maternal methylation at IC2 (PMID 30778172). Sources: Expert Review |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9380 | TMEM218 | Zornitza Stark Phenotypes for gene: TMEM218 were changed from Joubert syndrome; retinal dystrophy; polycystic kidneys; occipital encephalocele to Joubert syndrome 39, MIM#619562; retinal dystrophy; polycystic kidneys; occipital encephalocele | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9366 | NLRP5 |
Zornitza Stark edited their review of gene: NLRP5: Added comment: 'Maternal effect gene' Part of the subcortical maternal complex Report of five mothers carrying either monoallelic or biallelic variants in NLRP5, who had both unaffected offspring and offspring with BWS-MLID (Doherty 2015). Report of one family where the mother carried biallelic variants in NLRP5, had one offspring with BWS, one unaffected offspring and multiple miscarriages (Sparago 2019). Reports of at least three unrelated individuals with recurrent early embryonic arrest carrying biallelic variants in NLRP5. Functional work suggesting protein degradation in affected human cell lines (Mu 2019, Xu 2020).; Changed rating: GREEN; Changed publications: 32222962, 31829238, 30877238, 26323243, 34440388; Changed phenotypes: Early embryonic arrest, Multi locus imprinting disturbance in offspring; Changed mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9355 | SLC4A3 |
Daniel Flanagan gene: SLC4A3 was added gene: SLC4A3 was added to Mendeliome. Sources: Expert Review Mode of inheritance for gene: SLC4A3 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: SLC4A3 were set to PMID: 29167417; 34557911 Phenotypes for gene: SLC4A3 were set to Short QT syndrome Review for gene: SLC4A3 was set to AMBER Added comment: Moderate evidence for autosomal dominant short QT syndrome 1 by ClinGen /gene curation expert panel (PMID: 34557911). A single missense variant (absent gnomAD) identified in two SQTS families. In family 1, it segregated with SQTS (QTc<370ms) in 23 carriers, and 19 non-carriers had a QTc>370ms. In family 2, it segregated in 4 individuals. Experimental evidence from in vitro and zebrafish models suggests reduced membrane localization of the mutated protein leads to intracellular alkalinization and shortening of the cardiomyocyte action potential duration. ClinGen expert panel was divided between strong (4 votes) and moderate (5 votes). Sources: Expert Review |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9349 | CELF2 | Zornitza Stark Phenotypes for gene: CELF2 were changed from Developmental and epileptic encephalopathy to Developmental and epileptic encephalopathy 97, MIM#619561 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9348 | CELF2 | Zornitza Stark edited their review of gene: CELF2: Changed phenotypes: Developmental and epileptic encephalopathy 97, MIM#619561 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9333 | PLXNA1 |
Zornitza Stark gene: PLXNA1 was added gene: PLXNA1 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: PLXNA1 was set to BOTH monoallelic and biallelic, autosomal or pseudoautosomal Publications for gene: PLXNA1 were set to 34054129 Phenotypes for gene: PLXNA1 were set to Neurodevelopmental disorder with cerebral and eye anomalies Review for gene: PLXNA1 was set to GREEN Added comment: Dworschak et al. (2021) via WES reported 10 patients from 7 families with biallelic (n=7) or de novo (n=3) PLXNA1 variants. Shared phenotypic features include global developmental delay (9/10), brain anomalies (6/10), and eye anomalies (7/10). Seizures were predominantly reported in patients with monoallelic variants. Zebrafish studies showed an embryonic role of plxna1a in the development of the central nervous system and the eye. Biallelic variants in the extracellular Plexin-A1 domains lead to impaired dimerization or lack of receptor molecules, whereas monoallelic variants in the intracellular Plexin-A1 domains might impair downstream signaling through a dominant-negative effect. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9319 | CFAP221 |
Zornitza Stark gene: CFAP221 was added gene: CFAP221 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: CFAP221 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: CFAP221 were set to 31636325 Phenotypes for gene: CFAP221 were set to Primary ciliary dyskinesia Review for gene: CFAP221 was set to RED Added comment: WES in 1 family with 3 siblings with clinical symptoms of PCD identified compound heterozygous loss-of-function variants in CFAP221, which segregated with disease. No functional studies. Nasal epithelial cells from 1 of the subjects demonstrated slightly reduced beat frequency, however, waveform analysis revealed that the CFAP221 defective cilia beat in an aberrant circular pattern. A candidate gene in cases where PCD is suspected but cilia structure and beat frequency appear normal. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9303 | ZDHHC15 |
Krithika Murali changed review comment from: Lewis et al Neurology Genetics 2021 Functional analysis of 4 ZDHHC15 variants - x2 Jin et al, others identified through GeneMatcher Yeast cells expressing ZDHHC15 p.L13P (Jin et al, maternally inherited), p.K115R (maternally inherited) and p.S330p were indistinguishable from cells harboring the reference ZDHHC15 allele, however those expressing p.H158R (also reported in Jin et al, maternally inherited) disrupted normal protein function.; to: Lewis et al Neurology Genetics 2021 Functional analysis of 4 ZDHHC15 variants - x2 Jin et al Nat Genet 2020 PMID 32989326, others identified through GeneMatcher Yeast cells expressing ZDHHC15 p.L13P (Jin et al, maternally inherited), p.K115R (maternally inherited) and p.S330p were indistinguishable from cells harboring the reference ZDHHC15 allele, however those expressing p.H158R (also reported in Jin et al, maternally inherited) disrupted normal protein function. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9297 | WLS |
Teresa Zhao changed review comment from: - We identified homozygous mutations in 10 affected persons from 5 unrelated families. - Patients had multiorgan defects, including microcephal, facial dysmorphism, foot syndactyly, renal agenesis, alopecia, iris coloboma, and heart defects. - The mutations affected WLS protein stability and Wnt signaling. Knock-in mice showed tissue and cell vulnerability consistent with Wnt-signaling intensity and individual and collective functions of Wnts in embryogenesis. Sources: Literature; to: - Homozygous mutations in 10 affected persons from 5 unrelated families. - Patients had multiorgan defects, including microcephal, facial dysmorphism, foot syndactyly, renal agenesis, alopecia, iris coloboma, and heart defects. - The mutations affected WLS protein stability and Wnt signaling. Knock-in mice showed tissue and cell vulnerability consistent with Wnt-signaling intensity and individual and collective functions of Wnts in embryogenesis. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9297 | WLS |
Teresa Zhao gene: WLS was added gene: WLS was added to Mendeliome. Sources: Literature Mode of inheritance for gene: WLS was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: WLS were set to PMID: 34587386 Phenotypes for gene: WLS were set to Syndromic structural birth defects Review for gene: WLS was set to GREEN Added comment: - We identified homozygous mutations in 10 affected persons from 5 unrelated families. - Patients had multiorgan defects, including microcephal, facial dysmorphism, foot syndactyly, renal agenesis, alopecia, iris coloboma, and heart defects. - The mutations affected WLS protein stability and Wnt signaling. Knock-in mice showed tissue and cell vulnerability consistent with Wnt-signaling intensity and individual and collective functions of Wnts in embryogenesis. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9294 | SARS |
Bryony Thompson gene: SARS was added gene: SARS was added to Mendeliome. Sources: Literature Mode of inheritance for gene: SARS was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: SARS were set to 28236339; 34570399 Phenotypes for gene: SARS were set to Intellectual disability Review for gene: SARS was set to AMBER Added comment: Summary - 2 unrelated families with overlapping ID phenotype, and supporting in vitro and patient cell assays. PMID: 28236339 - an Iranian family (distantly related) segregating a homozygous missense (c.514G>A, p.Asp172Asn) with moderate ID, microcephaly, ataxia, speech impairment, and aggressive behaviour. Also, supporting in vitro functional assays demonstrating altered protein function. PMID: 34570399 - a consanguineous Turkish family segregating a homozygous missense (c.638G>T, p.(Arg213Leu)) with developmental delay, central deafness, cardiomyopathy, and metabolic decompensation during fever leading to death. Also, reduced protein level and enzymatic activity in patient cells. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9285 | PTPRC | Zornitza Stark Phenotypes for gene: PTPRC were changed from to Severe combined immunodeficiency, T cell-negative, B-cell/natural killer-cell positive MIM# 608971; Hepatitis C virus, susceptibility to MIM# 609532 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9282 | PTPRC | Zornitza Stark reviewed gene: PTPRC: Rating: GREEN; Mode of pathogenicity: None; Publications: 11145714, 12073144, 22689986, 10700239; Phenotypes: Severe combined immunodeficiency, T cell-negative, B-cell/natural killer-cell positive MIM# 608971, Hepatitis C virus, susceptibility to MIM# 609532; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9274 | CDH15 |
Zornitza Stark commented on gene: CDH15: PMID: 19012874 - 4 unrelated patients with missense variants and mild-severe ID. Only two genes checked. All variants are common in gnomAD (>20 hets each) and classified as VUS or likely benign in ClinVar (paper is from 2008, pre-dates gnomAD). Functional studies were performed showing a LOF effect, where cell adhesion was reduced. However NMD PTCs are present in gnomAD (many >=6 hets each) PMID: 12052883 - null mouse model were viable, showed no gross developmental defects. In particular, the skeletal musculature appeared essentially normal. In the cerebellum of M-cadherin-lacking mutants, typical contactus adherens junctions were present and similar in size and numbers to the equivalent junctions in wild-type animals. However, the adhesion plaques in the cerebellum of these mutants appeared to contain elevated levels of N-cadherin compared to wild-type animals. PMID: 28422132 - reviewed microdeletions spanning multiple genes including CDH15, suggests it may contribute to a more severe neurological phenotype, with particular regard to brain malformations. PMID: 26506440 - speculates low penetrance for PTCs in this gene. Acknowledges variants in ExAC, describes them as benign Note no P/LP variants in ClinVar |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9181 | HBG1 |
Zornitza Stark gene: HBG1 was added gene: HBG1 was added to Mendeliome. Sources: Expert Review Mode of inheritance for gene: HBG1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: HBG1 were set to 26500940 Phenotypes for gene: HBG1 were set to Fetal haemoglobin quantitative trait locus 1, 141749 Review for gene: HBG1 was set to GREEN Added comment: Classic hereditary persistence of fetal hemoglobin (HPFH) is characterized by a substantial elevation of fetal hemoglobin (HbF) in adult red blood cells. There are no other phenotypic or haematologic manifestations. Sources: Expert Review |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9170 | ERGIC1 |
Zornitza Stark gene: ERGIC1 was added gene: ERGIC1 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: ERGIC1 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: ERGIC1 were set to 28317099; 34037256 Phenotypes for gene: ERGIC1 were set to Arthrogryposis multiplex congenita 2, neurogenic type; OMIM # 208100 Review for gene: ERGIC1 was set to AMBER Added comment: Reinstein et al. (2018) used WES in a large consanguineous Israeli Arab kindred consisting of 16 patients affected with the neurogenic type of arthrogryposis multiplex congenita. They identified a homozygous missense (V98E) mutation in ERGIC1 gene, which segregated with the disorder in the kindred, and was not found in the ExAC database or in 212 ethnically matched controls. Functional studies of the variant and studies of patient cells were not performed. ERGIC1 encodes a cycling membrane protein which has a possible role in transport between endoplasmic reticulum and Golgi. Marconi et al (2021) used genome sequencing in a consanguineous family with 2 affected siblings presenting congenital arthrogryposis and some facial dysmorphism. They identified a homozygous 22.6 Kb deletion encompassing the promoter and first exon of ERGIC1. mRNA quantification showed the complete absence of ERGIC1 expression in the two affected siblings and a decrease in heterozygous parents. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9101 | UMPS |
Zornitza Stark edited their review of gene: UMPS: Added comment: 20 unrelated patients have been reported with biallelic missense variants; one mouse model Orotic aciduria is characterised by megaloblastic anaemia and orotic acid crystalluria, frequently associated with a degree of physical and intellectual disability. Other features include, congenital malformations (Atrial/ Ventricular septal defect) and immunodeficiencies (T-cell dysfunction, failure to thrive, recurrent infections). Haematology features - Megaloblastic anaemia - Low to normal reticulocyte count - Anisocytosis - Poikilocytosis - Hypochromia; Changed publications: 9042911, 33489760; Changed phenotypes: Orotic aciduria, MIM# 258900 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9098 | TPI1 |
Zornitza Stark changed review comment from: More than 10 unrelated families reported; bi-allelic (missense, nonsense, frameshift) variants; Common p.Glu104Asp variant in Northern European population Triosephosphate isomerase deficiency (TPID) is an autosomal recessive multisystem disorder characterised by early childhood onset congenital hemolytic anaemia, and progressive neuromuscular dysfunction. Many patients die from respiratory failure in childhood. The neurological features are variable, but usually includes lower motor neuron dysfunction with hypotonia, muscle weakness and atrophy, and hyporeflexia. Other features include intracellular accumulation of dihydroxyacetone phosphate (DHAP), particularly in red blood cells and increased susceptibility to infections.; to: More than 10 unrelated families reported; bi-allelic (missense, nonsense, frameshift) variants; Common p.Glu104Asp variant in Northern European population Triosephosphate isomerase deficiency (TPID) is an autosomal recessive multisystem disorder characterised by early childhood onset congenital haemolytic anaemia, and progressive neuromuscular dysfunction. Many patients die from respiratory failure in childhood. The neurological features are variable, but usually includes lower motor neuron dysfunction with hypotonia, muscle weakness and atrophy, and hyporeflexia. Other features include intracellular accumulation of dihydroxyacetone phosphate (DHAP), particularly in red blood cells and increased susceptibility to infections. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9098 | TPI1 |
Zornitza Stark edited their review of gene: TPI1: Added comment: More than 10 unrelated families reported; bi-allelic (missense, nonsense, frameshift) variants; Common p.Glu104Asp variant in Northern European population Triosephosphate isomerase deficiency (TPID) is an autosomal recessive multisystem disorder characterised by early childhood onset congenital hemolytic anaemia, and progressive neuromuscular dysfunction. Many patients die from respiratory failure in childhood. The neurological features are variable, but usually includes lower motor neuron dysfunction with hypotonia, muscle weakness and atrophy, and hyporeflexia. Other features include intracellular accumulation of dihydroxyacetone phosphate (DHAP), particularly in red blood cells and increased susceptibility to infections.; Changed publications: 9338582, 32873690, 8503454; Changed phenotypes: Haemolytic anaemia due to triosephosphate isomerase deficiency, MIM# 615512 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9067 | GLIS1 |
Seb Lunke changed review comment from: Functional studies in KO mice show increased intra-ocular pressure (IOT) caused by defects in the ocular drainage system. IOT is frequently associated with Glaucoma, however mice were not investigated for glaucoma, and no patients described. Sources: Literature; to: Functional studies in KO mice show increased intra-ocular pressure (IOT) caused by defects in the ocular drainage system. IOT is frequently associated with Glaucoma, however mice were not investigated for glaucoma, and no patients described. The authors did show dysregulation of GLIS1 in a human cell line study, and performed linkage analysis suggesting an association of the GLIS1 locus with Glaucoma in UK biobank samples. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9067 | CFAP206 |
Ain Roesley gene: CFAP206 was added gene: CFAP206 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: CFAP206 was set to BIALLELIC, autosomal or pseudoautosomal Phenotypes for gene: CFAP206 were set to Multiple morphological abnormalities of the fagella Penetrance for gene: CFAP206 were set to unknown Review for gene: CFAP206 was set to AMBER Added comment: 1x hom with a fs variant Sperm from knockout mouse model mainly had a fagellum of normal length but most of them showed abnormal forms including bent and coiled fagella. There was also a significant increase of sperm cells with absent or short fagella compared to the WT mice. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9026 | TOM1 |
Zornitza Stark gene: TOM1 was added gene: TOM1 was added to Mendeliome. Sources: Expert list Mode of inheritance for gene: TOM1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: TOM1 were set to 31263572 Phenotypes for gene: TOM1 were set to Immunodeficiency 85 and autoimmunity, MIM# 619510 Review for gene: TOM1 was set to RED Added comment: Parent and child reported with onset of atopic eczema and recurrent respiratory infections in the first decade of life; autoimmune enteropathy with vomiting, diarrhoea, and poor overall growth. More variable features included autoimmune oligoarthritis, interstitial pneumonitis, and EBV viremia. Laboratory studies showed hypogammaglobulinaemia and abnormal T-cell function, consistent with a combined immunodeficiency. Missense variant in TOM1, with limited functional data. Sources: Expert list |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9021 | CHRM1 |
Bryony Thompson gene: CHRM1 was added gene: CHRM1 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: CHRM1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: CHRM1 were set to 34212451; 31981491; 12483218 Phenotypes for gene: CHRM1 were set to Neurodevelopmental delay; intellectual disability; autism Review for gene: CHRM1 was set to AMBER Added comment: PMID: 34212451 - 2 unrelated cases with de novo missense variants (p.Pro380Leu and p.Phe425Ser), one case with early-onset refractory epilepsy, severe disability, and progressive cerebral and cerebellar atrophy, and the second case with mild dysmorphism, global developmental delay, and moderate intellectual disability. In vitro biochemical analyses of p.Pro380Leu demonstrated a reduction in protein levels, impaired cellular trafficking, and defective activation of intracellular signaling pathways. PMID: 31981491 - an autism spectrum disorder (no other information on phenotype, except ascertained to have severe neurodevelopmental delay) case with a de novo missense variant p.(Arg210Leu) PMID: 12483218 - null mouse model assessing memory demonstrated selective cognitive dysfunction. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9007 | KCTD7 | Zornitza Stark Phenotypes for gene: KCTD7 were changed from to Epilepsy, progressive myoclonic 3, with or without intracellular inclusions (MIM#611726) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.9004 | KCTD7 | Kristin Rigbye reviewed gene: KCTD7: Rating: GREEN; Mode of pathogenicity: None; Publications: 22693283, 22748208; Phenotypes: Epilepsy, progressive myoclonic 3, with or without intracellular inclusions (MIM#611726), AR; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8981 | PI4KA | Zornitza Stark edited their review of gene: PI4KA: Added comment: Neurodevelopmental syndrome with hypomyelinating leukodystrophy: 10 unrelated patients harbouring biallelic variants in PI4KA reported with a spectrum of severe global neurodevelopmental delay, hypomyelination, and developmental brain abnormalities, and pure spastic paraplegia. Some patients presented immunological deficits or genito-urinary abnormalities. Western blotting and immunofluorescence showed decreased PI4KA levels in the patients' fibroblasts. Immunofluorescence and targeted lipidomics indicated that PI4KA activity was diminished in fibroblasts and peripheral blood mononuclear cells.; Changed rating: GREEN; Changed publications: 25855803, 34415322; Changed phenotypes: Polymicrogyria, perisylvian, with cerebellar hypoplasia and arthrogryposis, MIM# 616531, Neurodevelopmental syndrome with hypomyelinating leukodystrophy | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8965 | PRKDC | Zornitza Stark Phenotypes for gene: PRKDC were changed from to Immunodeficiency 26, with or without neurologic abnormalities MIM# 615966; Absent T and B cells; normal NK cells; SCID; recurrent respiratory infections; microcephaly; seizures; developmental delay | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8962 | PRKDC | Zornitza Stark reviewed gene: PRKDC: Rating: GREEN; Mode of pathogenicity: None; Publications: 19075392, 23722905; Phenotypes: Immunodeficiency 26, with or without neurologic abnormalities MIM# 615966, Absent T and B cells, normal NK cells, SCID, recurrent respiratory infections, microcephaly, seizures, developmental delay; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8962 | TBX1 | Zornitza Stark Phenotypes for gene: TBX1 were changed from to DiGeorge syndrome MIM# 188400; Velocardiofacial syndrome MIM# 192430; Decreased T cells; Hypoparathyroidism; Conotruncal cardiac malformation; velopalatal insufficiency; abnormal facies (cleft palate, prominent tubular nose etc); intellectual disability; Immunodeficiency; thymic hypoplasia or aplasia with resultant T‐cell dysfunction; renal anomalies; autoimmunity | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8959 | TBX1 | Zornitza Stark reviewed gene: TBX1: Rating: GREEN; Mode of pathogenicity: None; Publications: 20301696, 31830774, 16684884; Phenotypes: DiGeorge syndrome MIM# 188400, Velocardiofacial syndrome MIM# 192430, Decreased T cells, Hypoparathyroidism, Conotruncal cardiac malformation, velopalatal insufficiency, abnormal facies (cleft palate, prominent tubular nose etc), intellectual disability, Immunodeficiency, thymic hypoplasia or aplasia with resultant T‐cell dysfunction, renal anomalies, autoimmunity; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8946 | RAG1 | Zornitza Stark Phenotypes for gene: RAG1 were changed from to Alpha/beta T-cell lymphopenia with gamma/delta T-cell expansion, severe cytomegalovirus infection, and autoimmunity MIM# 609889; Combined cellular and humoral immune defects with granulomas MIM# 233650; Omenn syndrome MIM# 603554; Severe combined immunodeficiency, B cell-negative MIM# 601457 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8943 | RAG2 | Zornitza Stark Phenotypes for gene: RAG2 were changed from to Omenn syndrome MIM# 603554; Severe combined immunodeficiency, B cell-negative MIM# 601457; Combined cellular and humoral immune defects with granulomas MIM# 233650 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8939 | RAG2 | Danielle Ariti reviewed gene: RAG2: Rating: GREEN; Mode of pathogenicity: None; Publications: 9630231, 11313270, 31885011, 8810255, 15025726, 18463379; Phenotypes: Omenn syndrome MIM# 603554, Severe combined immunodeficiency, B cell-negative MIM# 601457, Combined cellular and humoral immune defects with granulomas MIM# 233650; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8937 | RAG1 | Danielle Ariti reviewed gene: RAG1: Rating: GREEN; Mode of pathogenicity: None; Publications: 16276422, 18463379, 20489056, 9630231, 11313270, 17476359, 8810255, 6823332; Phenotypes: Alpha/beta T-cell lymphopenia with gamma/delta T-cell expansion, severe cytomegalovirus infection, and autoimmunity MIM# 609889, Combined cellular and humoral immune defects with granulomas MIM# 233650, Omenn syndrome MIM# 603554, Severe combined immunodeficiency, B cell-negative MIM# 601457; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8935 | MTHFD1 | Danielle Ariti reviewed gene: MTHFD1: Rating: GREEN; Mode of pathogenicity: None; Publications: Combined immunodeficiency and megaloblastic anemia with or without hyperhomocysteinaemia MIM # 617780, Decreased Ig levels, poor antibody responses to conjugated polysaccharide antigens, low B/T/NK cells, Recurrent bacterial infection, megaloblastic anaemia, failure to thrive, neutropenia, seizures, intellectual disability, folate-responsive, Lymphopaenia; Phenotypes: 32414565, 19033438; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8853 | PLAG1 |
Zornitza Stark edited their review of gene: PLAG1: Added comment: Additional families reported, upgrade to Green. Silver-Russell syndrome-4 (SRS4) is characterised by intrauterine growth retardation followed by feeding difficulties and postnatal growth restriction. Dysmorphic facial features include triangular face and prominent forehead, and relative macrocephaly at birth may be observed. So far 4 families have been reported with some functional studies of the role of the gene in the growth pathway. Abi Habib et al. (2018) reported 1 family (child, sister and mother) patient with Silver-Russell syndrome (with normal methylation on chromosomes 7, 11, and 14, and exclusion of maternal UPD and chromosomal rearrangements). Using WES they identified a heterozygous 1-bp deletion in the PLAG1 gene. The variant segregated with disease, and was not present in polymorphism databases or ExAC. They also reported another patient with a different heterozygous 1-bp deletion in the PLAG1 gene. This was not found in her unaffected twin brother, older brother, or parents. Experiments in Hep3b cells demonstrated that PLAG1 positively regulates expression of the IGF2 promoter P3, independently and via the HMGA2-PLAG1-IGF2 pathway. Disruption of any gene in the pathway results in a decrease in IGF2 expression and produces an SRS phenotype similar to that of patients carrying 11p15.5 epigenetic defects (SRS1; 180860), except for body asymmetry, which is not expected to occur since the molecular defects are present in all cells of the body, unlike the mosaic epigenetic changes at the 11p15.5 locus. Inoue et al. (2020) reported 1 family with 2 affected people with Silver-Russell syndrome with a nonsense variant in the PLAG1 gene, which segregated with disease. Vado et al. (2020) reported 1 family with multiple affected people with Silver-Russell syndrome with a frameshift variant in the PLAG1 gene, which segregated with disease.; Changed rating: GREEN; Changed publications: 28796236, 29913240, 33291420, 32546215 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8851 | WIPF1 | Zornitza Stark Phenotypes for gene: WIPF1 were changed from to Wiskott-Aldrich syndrome 2 MIM# 614493; Reduced T cells; defective lymphocyte responses to anti-CD3; high IgE; Thrombocytopenia with or without small platelets; recurrent bacterial and viral Infections; eczema; bloody diarrhoea; gastrointestinal bleeding; WAS protein absent | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8836 | WIPF1 | Danielle Ariti reviewed gene: WIPF1: Rating: GREEN; Mode of pathogenicity: None; Publications: 22231303, 27742395, 11869681, 14757742; Phenotypes: Wiskott-Aldrich syndrome 2 MIM# 614493, Reduced T cells, defective lymphocyte responses to anti-CD3, high IgE, Thrombocytopenia with or without small platelets, recurrent bacterial and viral Infections, eczema, bloody diarrhoea, gastrointestinal bleeding, WAS protein absent; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8834 | RNF220 |
Zornitza Stark gene: RNF220 was added gene: RNF220 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: RNF220 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: RNF220 were set to 33964137; 10881263 Phenotypes for gene: RNF220 were set to Leukodystrophy; CNS hypomyelination; Ataxia; Intellectual disability; Sensorineural hearing impairment; Elevated hepatic transaminases; Hepatic fibrosis; Dilated cardiomyopathy; Spastic paraplegia; Dysarthria; Abnormality of the corpus callosum Review for gene: RNF220 was set to GREEN Added comment: Sferra et al (2021 - PMID: 33964137) provide extensive evidence that biallelic RNF220 mutations cause a disorder characterized by hypomyelinating leukodystrophy, ataxia (9/9 - onset 1-5y), borderline intellectual functioning (3/9) / intellectual disability (5/9 - in most cases mild), sensorineural deafness (9/9) with complete hearing loss in the first decade of life, hepatopathy (9/9) with associated periportal fibrosis, and dilated cardiomyopathy (9/9) which was fatal. Other neurologic manifestations apart from ataxia incl. hyperreflexia (8/8), spastic paraplegia (9/9), dysarthria (9/9), peripheral neuropathy (4/9), seizures in one case (1/9). Upon brain MRI there was thin corpus callosum (9/9) or cerebellar atrophy in some (2/9). The authors identified homozygosity for 2 recurrent missense RNF220 variants in affected members belonging to these 5 broad consanguineous pedigrees (7 families), namely NM_018150.4:c.1094G>A / p.Arg365Gly in 4 Roma families in the context of a shared haplotype (/founder effect) as well as c.1088G>A / p.Arg363Gly in a large pedigree from southern Italy initially reported by Leuzzi et al (2000 - PMID: 10881263). Extensive segregation analyses were carried out including several affected and unaffected members. RNF220 encodes ring finger protein 220, which functions as an E3 ubiquitin ligase. Previous studies have shown among others a role in modulation of Sonic hedgehog/GLI signaling and cerebellar development Evidence for the role of RNF220 included relevant expression, localization within the cell, interaction partners (lamin B1, 20S proteasome), similarities with other laminopathies in terms of phenotype, etc : *RNF220 has a relevant expression pattern in CNS (based on qRT-PCR analyses in human brain, cerebellum, cerebral cortex / mRNA levels in human fetal CNS with higher expression in cerebellum, spinal cord and cortex / previous GTEx data / protein levels in mouse CNS) *The protein displays nuclear localization based on iPSC cells differentiated to motor neurons (also supported by data from the Human Protein Atlas). Transfection of COS-1 cells demonstrated localization primarily to the nucleus (as also previously demonstrated in HEK293T cells) in vesicle like structures with ASF2/SF2 colocalization suggesting enrichment in nuclear speckles. There was also partial co-distribution with the 20S proteasome. R363Q and R365Q additionally coalesced in the cytoplasm forming protein aggregates/inclusions. *Immunofluorescence studies in patient fibroblasts also confirmed abnormal increase of the protein in the cytoplasm and increased fluorescence with the 20S proteasome. *Proteomic identification of RNF220-interacting proteins in transfected HEK293T cells demonstrated enrichment for all members of the lamin protein family (incl . lamin B1, AC, B2). *RNAi-mediated downregulation of RNF222 in Drosophila suggested altered subcellular localization and accumulation of the fly orthologue for human lamin B1. *Immunoprecipitation of lamin B1 from the nuclear matrix of cerebellar cells suggested significant interaction of endogenous lamin B1 with RNF220, while transfection studies in HEK293T cells for wt/mt suggested reduced binding to endogenous lamin B1 for RNF220 mt compared to wt (more prominent for R365Q). RNF220 mutants also reduced ubiquitination of nuclear lamin B1 compared to wt. *Patient fibroblasts immunostained with different nuclear envelope markers displayed abnormal nuclear shapes with multiple invaginations and lobulations, findings also observed in laminopathies. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8807 | VPS50 |
Zornitza Stark gene: VPS50 was added gene: VPS50 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: VPS50 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: VPS50 were set to 34037727 Phenotypes for gene: VPS50 were set to Neonatal cholestatic liver disease; Failure to thrive; Profound global developmental delay; Postnatal microcephaly; Seizures; Abnormality of the corpus callosum Review for gene: VPS50 was set to AMBER Added comment: Schneeberger et al (2021 - PMID: 34037727) describe the phenotype of 2 unrelated individuals with biallelic VPS50 variants. Common features included transient neonatal cholestasis, failure to thrive, severe DD with failure to achieve milestones (last examination at 2y and 2y2m respectively), postnatal microcephaly, seizures (onset at 6m and 25m) and irritability. There was corpus callosum hypoplasia on brain imaging. Both individuals were homozygous for variants private to each family (no/not known consanguinity applying to each case). The first individual was homozygous for a splicing variant (NM_017667.4:c.1978-1G>T) and had a similarly unaffected sister deceased with no available DNA for testing. The other individual was homozygous for an in-frame deletion (c.1823_1825delCAA / p.(Thr608del)). VPS50 encodes a critical component of the endosome-associated recycling protein (EARP) complex, which functions in recycling endocytic vesicles back to the plasma membrane [OMIM based on Schindler et al]. The complex contains VPS50, VPS51, VPS52, VPS53, the three latter also being components of GARP (Golgi-associated-retrograde protein) complex. GARP contains VPS54 instead of VPS50 and is required for trafficking of proteins to the trans-golgi network. Thus VPS50 (also named syndetin) and VPS54 function in the EARP and GARP complexes, to define directional movement of their endocytic vesicles [OMIM based on Schindler et al]. The VPS50 subunit is required for recycling of the transferrin receptor. As discussed by Schneeberger et al (refs provided in text): - VPS50 has a high expression in mouse and human brain as well as throughout mouse brain development. - Mice deficient for Vps50 have not been reported. vps50 knockdown in zebrafish results in severe developmental defects of the body axis. Knockout mice for other proteins of the EARP/GARP complex (e.g. Vps52, 53 and 54) display embryonic lethality. Studies performed by Schneeberger et al included: - Transcript analysis for the 1st variant demonstrated skipping of ex21 (in patient derived fabriblasts) leading to an in frame deletion of 81 bp (r.1978_2058del) with predicted loss of 27 residues (p.Leu660_Leu686del). - Similar VPS50 mRNA levels but significant reduction of protein levels (~5% and ~8% of controls) were observed in fibroblasts from patients 1 and 2. Additionally, significant reductions in the amounts of VPS52 and VPS53 protein levels were observed despite mRNA levels similar to controls. Overall, this suggested drastic reduction of functional EARP complex levels. - Lysosomes appeared to have similar morphology, cellular distribution and likely unaffected function in patient fibroblasts. - Transferrin receptor recycling was shown to be delayed in patient fibroblasts suggestive of compromise of endocytic-recycling function. As the authors comment, the phenotype of both individuals with biallelic VPS50 variants overlaps with the corresponding phenotype reported in 15 subjects with biallelic VPS53 or VPS51 mutations notably, severe DD/ID, microcephaly and early onset epilepsy, CC anomalies. Overall, for this group, they propose the term "GARP and/or EARP deficiency disorders". There is no VPS50-associated phenotype in OMIM or G2P. SysID includes VPS50 among the ID candidate genes. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8776 | STK4 | Zornitza Stark Phenotypes for gene: STK4 were changed from to T-cell immunodeficiency, recurrent infections, autoimmunity, and cardiac malformations MIM# 614868; CD4/CD8 lymphopaenia; cardiac malformations; reduced naïve T cells; increased TEM and TEMRA cells; poor T cell Proliferation; Reduced memory B cells; Reduced IgM, increased IgG, IgA, IgE; impaired antibody responses; intermittent neutropaenia; bacterial/ viral/ fungal infections; autoimmune cytopaenias; mucocutaneous candidiasis; cutaneous warts | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8773 | SP110 | Zornitza Stark Phenotypes for gene: SP110 were changed from to Hepatic veno-occlusive disease with immunodeficiency MIM#235550; Hepatic veno-occlusive disease; susceptibility to Pneumocystis jirovecii pneumonia; cytomegalovirus; thrombocytopaenia; hepatosplenomegaly; cerebrospinal leukodystrophy; memory T/B cell deficiency; low Ig levels; absent tissue plasma cells; absent lymph node germinal centers; hypogammaglobulinaemia | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8770 | SMARCAL1 | Zornitza Stark Phenotypes for gene: SMARCAL1 were changed from to Schimke immune-osseous dysplasia MIM# 242900; T cell deficiency; Short stature; spondyloepiphyseal dysplasia; renal dysfunction; lymphocytopaenia; nephropathy; bacterial/viral/fungal infections; may present as SCID; bone marrow failure | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8767 | STK4 | Danielle Ariti reviewed gene: STK4: Rating: GREEN; Mode of pathogenicity: None; Publications: 22294732, 26117625, 22174160, 22952854; Phenotypes: T-cell immunodeficiency, recurrent infections, autoimmunity, and cardiac malformations MIM# 614868, CD4/CD8 lymphopaenia, cardiac malformations, reduced naïve T cells, increased TEM and TEMRA cells, poor T cell Proliferation, Reduced memory B cells, Reduced IgM, increased IgG, IgA, IgE, impaired antibody responses, intermittent neutropaenia, bacterial/ viral/ fungal infections, autoimmune cytopaenias, mucocutaneous candidiasis, cutaneous warts; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8767 | SPINK5 | Danielle Ariti reviewed gene: SPINK5: Rating: ; Mode of pathogenicity: None; Publications: 33534181, 20657595; Phenotypes: Netherton syndrome MIM# 256500, Low switched and non-switched B cells, High IgE and IgA, Antibody variably decreased, Congenital ichthyosis, bamboo hair, atopic diathesis, increased bacterial infections, failure to thrive, food allergies; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8767 | SP110 | Danielle Ariti reviewed gene: SP110: Rating: GREEN; Mode of pathogenicity: None; Publications: 20301448, 31721003; Phenotypes: Hepatic veno-occlusive disease with immunodeficiency MIM#235550, Hepatic veno-occlusive disease, susceptibility to Pneumocystis jirovecii pneumonia, cytomegalovirus, thrombocytopaenia, hepatosplenomegaly, cerebrospinal leukodystrophy, memory T/B cell deficiency, low Ig levels, absent tissue plasma cells, absent lymph node germinal centers, hypogammaglobulinaemia; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8767 | SMARCAL1 | Danielle Ariti reviewed gene: SMARCAL1: Rating: GREEN; Mode of pathogenicity: None; Publications: 20301550, 17089404, 20036229; Phenotypes: Schimke immune-osseous dysplasia MIM# 242900, T cell deficiency, Short stature, spondyloepiphyseal dysplasia, renal dysfunction, lymphocytopaenia, nephropathy, bacterial/viral/fungal infections, may present as SCID, bone marrow failure; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8722 | RFXAP | Zornitza Stark Phenotypes for gene: RFXAP were changed from to Bare lymphocyte syndrome, type II, complementation group D MIM# 209920; Low CD4+ T cells; reduced MHC II expression on lymphocytes; Normal-low Ig levels; Failure to thrive; respiratory/gastrointestinal infections; liver/biliary tract disease; diarrhoea; Severe autoimmune cytopaenia; agammaglobulinaemia | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8719 | RFXANK | Zornitza Stark Phenotypes for gene: RFXANK were changed from to MHC class II deficiency, complementation group B MIM# 209920; Bare Lymphocyte Syndrome, type II, complementation group B; Low CD4+ T cells; reduced MHC II expression on lymphocytes; Normal-low Ig levels; Failure to thrive; respiratory/gastrointestinal infections; liver/biliary tract disease; diarrhoea; Severe autoimmune cytopaenia; agammaglobulinaemia | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8713 | RFXANK | Danielle Ariti reviewed gene: RFXANK: Rating: GREEN; Mode of pathogenicity: None; Publications: 12618906; Phenotypes: MHC class II deficiency, complementation group B MIM# 209920, Bare Lymphocyte Syndrome, type II, complementation group B, Low CD4+ T cells, reduced MHC II expression on lymphocytes, Normal-low Ig levels, Failure to thrive, respiratory/gastrointestinal infections, liver/biliary tract disease, diarrhoea, Severe autoimmune cytopaenia, agammaglobulinaemia; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8713 | RFXAP | Danielle Ariti reviewed gene: RFXAP: Rating: GREEN; Mode of pathogenicity: None; Publications: 9118943, 32875002, 11258423; Phenotypes: Bare lymphocyte syndrome, type II, complementation group D MIM# 209920, Low CD4+ T cells, reduced MHC II expression on lymphocytes, Normal-low Ig levels, Failure to thrive, respiratory/gastrointestinal infections, liver/biliary tract disease, diarrhoea, Severe autoimmune cytopaenia, agammaglobulinaemia; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8696 | CD19 | Zornitza Stark changed review comment from: More than 5 unrelated families reported.; to: More than 5 unrelated families reported. Clinical features include increased susceptibility to infection, hypogammaglobulinaemia, and normal numbers of mature B cells in blood, indicating a B-cell antibody-deficient immunodeficiency disorder. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8657 | NFKBIA | Zornitza Stark Phenotypes for gene: NFKBIA were changed from to Ectodermal dysplasia and immunodeficiency 2 MIM# 612132; Ectodermal dysplasia; TCR/ BCR activation impaired; low memory and isotype switched B cells; decreased IgG and IgA; elevated IgM; poor specific antibody responses; diarrhoea; agammaglobulinaemia; ectodermal dysplasia; recurrent respiratory and gastrointestinal infections; colitis; variable defects of skin, hair and teeth | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8654 | NFKB2 | Zornitza Stark Phenotypes for gene: NFKB2 were changed from to Immunodeficiency, common variable, 10 MIM# 615577; Low serum IgG, IgA, IgM; low B cell numbers; low switched memory B cells; Recurrent sinopulmonary infections, Alopecia; endocrinopathies; ACTH deficiency | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8651 | NFKB1 | Zornitza Stark Phenotypes for gene: NFKB1 were changed from to Immunodeficiency, common variable, 12 MIM# 616576; Normal-low IgG, IgA, IgM; low-normal B cells; low switched memory B cells; hypogammaglobulinaemia; recurrent respiratory and gastrointestinal infections; Chronic obstructive pulmonary disease COPD; EBV proliferation; autoimmunity; alopecia | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8648 | MCM4 | Zornitza Stark Phenotypes for gene: MCM4 were changed from to Immunodeficiency 54 MIM# 609981; Decreased NK cell number and function; Viral infections (EBV, HSV, VZV); Short stature; B cell lymphoma; Adrenal failure; Failure to thrive; Microcephaly; Increased chromosomal breakage; Hyperpigmentation; Lymphadenopathy | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8644 | MCM4 | Zornitza Stark reviewed gene: MCM4: Rating: AMBER; Mode of pathogenicity: None; Publications: 22354167, 22354170, 22499342; Phenotypes: Immunodeficiency 54 MIM# 609981, Decreased NK cell number and function, Viral infections (EBV, HSV, VZV), Short stature, B cell lymphoma, Adrenal failure, Failure to thrive, Microcephaly, Increased chromosomal breakage, Hyperpigmentation, Lymphadenopathy; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8644 | MAP3K14 | Zornitza Stark Phenotypes for gene: MAP3K14 were changed from to NIK deficiency; Poor T cell proliferation to antigen; Low B-cell numbers; Low NK number and function; recurrent bacterial/viral/ cryptosporidium infections; hypogammaglobulinaemia; decreased immunoglobulin levels | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8641 | MAP3K14 | Zornitza Stark reviewed gene: MAP3K14: Rating: GREEN; Mode of pathogenicity: None; Publications: 10319865, 11238593, 12352969; Phenotypes: NIK deficiency, Poor T cell proliferation to antigen, Low B-cell numbers, Low NK number and function, recurrent bacterial/viral/ cryptosporidium infections, hypogammaglobulinaemia, decreased immunoglobulin levels; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8641 | LRBA | Zornitza Stark Phenotypes for gene: LRBA were changed from to Immunodeficiency, common variable, 8, with autoimmunity MIM# 614700; Normal-decreased CD4 numbers; T cell dysregulation; Low-normal B cells; Reduced IgG and IgA; Recurrent infections; chronic diarrhoea; inflammatory bowel disease; hypogammaglobulinaemia; pneumonitis; autoimmune disorders; thrombocytopaenia | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8638 | LRBA | Zornitza Stark reviewed gene: LRBA: Rating: GREEN; Mode of pathogenicity: None; Publications: 22608502, 22721650, 25468195, 26206937, 33155142; Phenotypes: Immunodeficiency, common variable, 8, with autoimmunity MIM# 614700, Normal-decreased CD4 numbers, T cell dysregulation, Low-normal B cells, Reduced IgG and IgA, Recurrent infections, chronic diarrhoea, inflammatory bowel disease, hypogammaglobulinaemia, pneumonitis, autoimmune disorders, thrombocytopaenia; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8638 | NFKBIA | Danielle Ariti reviewed gene: NFKBIA: Rating: GREEN; Mode of pathogenicity: Loss-of-function variants (as defined in pop up message) DO NOT cause this phenotype - please provide details in the comments; Publications: 28597146, 23864385, 23708964; Phenotypes: Ectodermal dysplasia and immunodeficiency 2 MIM# 612132, Ectodermal dysplasia, TCR/ BCR activation impaired, low memory and isotype switched B cells, decreased IgG and IgA, elevated IgM, poor specific antibody responses, diarrhoea, agammaglobulinaemia, ectodermal dysplasia, recurrent respiratory and gastrointestinal infections, colitis, variable defects of skin, hair and teeth; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8638 | NFKB2 | Danielle Ariti reviewed gene: NFKB2: Rating: GREEN; Mode of pathogenicity: None; Publications: 24140114, 24888602, 25524009, 31417880; Phenotypes: Immunodeficiency, common variable, 10 MIM# 615577, Low serum IgG, IgA, IgM, low B cell numbers, low switched memory B cells, Recurrent sinopulmonary infections, Alopecia, endocrinopathies, ACTH deficiency; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8638 | NFKB1 | Danielle Ariti reviewed gene: NFKB1: Rating: GREEN; Mode of pathogenicity: None; Publications: 26279205, 32278790, 27022143, 7834752; Phenotypes: Immunodeficiency, common variable, 12 MIM# 616576, Normal-low IgG, IgA, IgM, low-normal B cells, low switched memory B cells, hypogammaglobulinaemia, recurrent respiratory and gastrointestinal infections, Chronic obstructive pulmonary disease COPD, EBV proliferation, autoimmunity, alopecia; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8629 | IL7R | Zornitza Stark Phenotypes for gene: IL7R were changed from to Severe combined immunodeficiency, T-cell negative, B-cell/natural killer cell-positive type MIM# 608971; fever; rash; failure to thrive; recurrent respiratory and gastric infections; diarrhoea; lymphadenopathy; pneumonitis; Pancytopaenia; low T-cell numbers; decreased immunoglobulins; normal-high B/NK-cell numbers. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8626 | MALT1 | Zornitza Stark Phenotypes for gene: MALT1 were changed from to Immunodeficiency 12 MIM# 615468; poor T-cell proliferation; normal T/B cell numbers; poor specific antibody response; recurrent bacterial/fungal/viral infections; bronchiectasis; failure to thrive | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8623 | IL2RG | Zornitza Stark Phenotypes for gene: IL2RG were changed from to Combined immunodeficiency, X-linked, moderate MIM# 312863; Severe combined immunodeficiency, X-linked MIM# 300400; recurrent viral/fungal/bacterial infections; Low T/NK cells; Low Ig levels; lymphocytopaenia; hypogammaglobulinaemia; failure to thrive; diarrhoea; Pneumonia; Thymic hypoplasia | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8620 | IL2RG | Zornitza Stark reviewed gene: IL2RG: Rating: GREEN; Mode of pathogenicity: None; Publications: 20301584, 8462096, 8401490, 7883965, 9399950; Phenotypes: Combined immunodeficiency, X-linked, moderate MIM# 312863, Severe combined immunodeficiency, X-linked MIM# 300400, recurrent viral/fungal/bacterial infections, Low T/NK cells, Low Ig levels, lymphocytopaenia, hypogammaglobulinaemia, failure to thrive, diarrhoea, Pneumonia, Thymic hypoplasia; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8620 | IKZF1 | Zornitza Stark Phenotypes for gene: IKZF1 were changed from to Immunodeficiency, common variable, 13 MIM# 616873; recurrent bacterial respiratory infections; Thrombocytopaenia; immunodeficiency; Hypogammaglobulinaemia; decrease B-cells; decrease B-cell differentiation; decrease memory B/T cells; Low Ig; pneumocystis early CID onset | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8617 | IKZF1 | Zornitza Stark reviewed gene: IKZF1: Rating: GREEN; Mode of pathogenicity: None; Publications: 21548011, 26981933, 29889099, 31057532, 7923373, 11805317; Phenotypes: Immunodeficiency, common variable, 13 MIM# 616873, recurrent bacterial respiratory infections, Thrombocytopaenia, immunodeficiency, Hypogammaglobulinaemia, decrease B-cells, decrease B-cell differentiation, decrease memory B/T cells, Low Ig, pneumocystis early CID onset; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8617 | ITK | Zornitza Stark Phenotypes for gene: ITK were changed from to Lymphoproliferative syndrome 1 MIM# 613011; Lymphadenopathy; Recurrent infections; Hypogammaglobulinaemia; Evidence of EBV infection; EBV associated B cell Lymphoproliferation; High EBV viral load; Normal-low serum Ig; Depleted CD4+ T cells; Anaemia; Thrombocytopaenia; Hepatosplenomegaly | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8614 | MALT1 |
Danielle Ariti edited their review of gene: MALT1: Added comment: 5 individuals from 3 unrelated families with immunodeficiency phenotype have reported variants in MALT1; two MALT1-knockout mouse models displaying primary T- and B-cell lymphocyte deficiency. Variants identified were homozygous missense variants resulting in the alteration of highly conserved residue domains. All individuals reported onset in infancy of recurrent bacterial/ fungal/ viral infections leading to bronchiectasis and poor T-cell proliferation.; Changed rating: GREEN |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8614 | IL7R | Danielle Ariti reviewed gene: IL7R: Rating: GREEN; Mode of pathogenicity: None; Publications: 9843216, 19890784, 26123418, 11023514, 7964471; Phenotypes: Severe combined immunodeficiency, T-cell negative, B-cell/natural killer cell-positive type MIM# 608971, fever, rash, failure to thrive, recurrent respiratory and gastric infections, diarrhoea, lymphadenopathy, pneumonitis, Pancytopaenia, low T-cell numbers, decreased immunoglobulins, normal-high B/NK-cell numbers.; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8614 | ITK | Danielle Ariti reviewed gene: ITK: Rating: GREEN; Mode of pathogenicity: None; Publications: 19425169, 22289921, 25061172, 26056787, 9311799, 10213685; Phenotypes: Lymphoproliferative syndrome 1 MIM# 613011, Lymphadenopathy, Recurrent infections, Hypogammaglobulinaemia, Evidence of EBV infection, EBV associated B cell Lymphoproliferation, High EBV viral load, Normal-low serum Ig, Depleted CD4+ T cells, Anaemia, Thrombocytopaenia, Hepatosplenomegaly; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8614 | MALT1 | Danielle Ariti reviewed gene: MALT1: Rating: AMBER; Mode of pathogenicity: None; Publications: 23727036, 24332264, 14576442, 31037583; Phenotypes: Immunodeficiency 12 MIM# 615468, poor T-cell proliferation, normal T/B cell numbers, poor specific antibody response, recurrent bacterial/fungal/viral infections, bronchiectasis, failure to thrive; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8601 | CLCN3 |
Kristin Rigbye gene: CLCN3 was added gene: CLCN3 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: CLCN3 was set to BOTH monoallelic and biallelic, autosomal or pseudoautosomal Publications for gene: CLCN3 were set to PMID: 34186028 Phenotypes for gene: CLCN3 were set to Neurodevelopmental disorder Mode of pathogenicity for gene: CLCN3 was set to Other Review for gene: CLCN3 was set to GREEN Added comment: 11 individuals reported, 9 that carried 8 different rare heterozygous missense variants in CLCN3, and 2 siblings that were homozygous for an NMD-predicted frameshift variant likely abolishing ClC-3 function. All missense variants were confirmed to be de novo in eight individuals for whom parental data was available. The 11 individuals in the cohort share clinical features of variable severity. All 11 have GDD or ID and dysmorphic features, and a majority has mood or behavioural disorders and structural brain abnormalities: - Structural brain abnormalities on MRI (9/11) included partial or full agenesis of the corpus callosum (6/9), disorganized cerebellar folia (4/9), delayed myelination (3/9), decreased white matter volume (3/9), pons hypoplasia (3/9), and dysmorphic dentate nuclei (3/9). Six of those with brain abnormalities also presented with seizures. - Nine have abnormal vision, including strabismus in four and inability to fix or follow in the two with homozygous loss-of-function variants. - Hypotonia ranging from mild to severe was reported in 7 of the 11 individuals. - Six have mood or behavioural disorders, particularly anxiety (3/6). - Consistent dysmorphic facial features included microcephaly, prominent forehead, hypertelorism, down-slanting palpebral fissures, full cheeks, and micrognathia. The severity of disease in the two siblings with homozygous disruption of ClC-3 is consistent with the drastic phenotype seen in Clcn3 KO mice. The disease was more severe in two siblings carrying homozygous loss-of-function variants with the presence of GDD, absent speech, seizures, and salt and pepper fundal pigmentation in both individuals, with one deceased at 14 months of age. The siblings also had significant neuroanatomical findings including diffusely decreased white matter volume, thin corpora callosa, small hippocampi, and disorganized cerebellar folia. Supporting biallelic inheritance for LoF variants, disruption of mouse Clcn3 results in drastic neurodegeneration with loss of the hippocampus a few months after birth and early retinal degeneration. Clcn3−/− mice display severe neurodegeneration, whereas heterozygous Clcn3+/− mice appear normal. Patch-clamp studies were used to investigate four of the missense variants. These suggested a gain of function in two variants with increased current in HEK cells, however they also showed reduced rectification of voltage and a loss of transient current, plus decreased current amplitude, glycosylation and surface expression when expressed in oocytes, and were suspected to interfere with channel gating and a negative feedback mechanism. These effects were also shown to vary depending on pH levels. The current of the remaining two variants did not differ from WT. For heterozygous missense variants, the disruption induced may be at least partially conferred to mutant/WT homodimers and mutant/ClC-4 heterodimers. Both loss and gain of function in this gene resulted in the same phenotype. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8586 | TP73 |
Ee Ming Wong changed review comment from: - Seven individuals from five unrelated families homozygous for TP73 variants (includes 1x large deletion, 1x splice variant, 1x frameshift and 2x nonsense variants) - Epithelial cells from TP73 variant carriers showed reduced number of ciliated cells and shortened cilia resulting in abnormal ciliary clearance of the airways compared to healthy controls; to: - Seven individuals from five unrelated families homozygous for TP73 variants (includes 1x large deletion, 1x splice variant, 1x frameshift and 2x nonsense variants) - In vitro ciliogenesis experiments demonstrated that epithelial cells from TP73 variant carriers had reduced number of ciliated cells and shortened cilia resulting in abnormal ciliary clearance of the airways compared to healthy controls |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8586 | GCNA |
Ain Roesley gene: GCNA was added gene: GCNA was added to Mendeliome. Sources: Literature Mode of inheritance for gene: GCNA was set to X-LINKED: hemizygous mutation in males, biallelic mutations in females Publications for gene: GCNA were set to 33963445 Phenotypes for gene: GCNA were set to primary spermatogenic failure Penetrance for gene: GCNA were set to unknown Review for gene: GCNA was set to GREEN Added comment: 7x probands all missense except 1 fs. Variants had <0.0005 MAF in gnomad v2 male cohort and absent in 5784 Dutch control cohort no functional studies were done except for histology of Ser659Trp, revealing a Sertoli-cell only Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8583 | PRDX3 |
Hazel Phillimore changed review comment from: Biallelic variants in 5 unrelated families with early onset (median 21 years , range 13-22 years) with ataxia with variable additional hyper- and hypokinetic movement disorders, and severe early-onset cerebellar atrophy (seen on MRI), and involvement of the brainstem, medullary olive and parietal cortex. Evolution of the disease was gait ataxia leading to upper limb ataxia, then dysarthria and then dysphagia, all within a decade. For some of these patients, the phenotype included myoclonus, dystonia and / or tremor. Mild classical mitochondrial features were seen in one of the patients, namely ptosis and COX-negative fibres. The variants were homozygous nonsense, homozygous frameshift, homozygous missense, and a compound heterozygote of a splice variant and missense, all leading to complete loss of the protein. Oxidative stress and mitochondrial dysfunction was indicated as the disease mechanism. The families originated from Germany, France, India and two from eastern Turkey. The two families from Turkey were seemingly unrelated to each other but had the same homozygous missense. Patient fibroblasts from each of the five probands showed lack of protein (via Western blot) and decreased glutathione peroxidase activity and decreased mitochondrial maximal respiratory capacity. PRXD3 encodes peroxiredoxin 3, a mitochondrial antioxidant protein, that catalyses the reduction of hydrogen peroxide. It localises in the mitochondria, where most hydrogen peroxide is generated. Functional studies: PRDX3 knockdown (induced by silencing RNA against PRDX3) in cerebellar medulloblastoma cells showed significantly decreased cell viability, increased hydrogen peroxide levels and increased susceptibility to apoptosis triggered by reactive oxygen species. In addition, induced knockdown drosophila (in vivo animal model) had aberrant locomotor phenotypes and reduced lifespans, while immunolabelling of the brain showed increased cell death after exposure to oxidative stress. Sources: Literature; to: Biallelic variants in 5 unrelated families with early onset (median 21 years , range 13-22 years) with ataxia with variable additional hyper- and hypokinetic movement disorders, and severe early-onset cerebellar atrophy (seen on MRI), and involvement of the brainstem, medullary olive and parietal cortex. Evolution of the disease was gait ataxia leading to upper limb ataxia, then dysarthria and then dysphagia, all within a decade. For some of these patients, the phenotype included myoclonus, dystonia and / or tremor. Mild classical mitochondrial features were seen in one of the patients, namely ptosis and COX-negative fibres. The variants were homozygous nonsense, homozygous frameshift, homozygous missense, and a compound heterozygote with a splice variant and missense, all leading to complete loss of the protein. Oxidative stress and mitochondrial dysfunction was indicated as the disease mechanism. The families originated from Germany, France, India and two from eastern Turkey. The two families from Turkey were seemingly unrelated to each other but had the same homozygous missense. Patient fibroblasts from each of the five probands showed lack of protein (via Western blot) and decreased glutathione peroxidase activity and decreased mitochondrial maximal respiratory capacity. PRDX3 encodes peroxiredoxin 3, a mitochondrial antioxidant protein, that catalyses the reduction of hydrogen peroxide. It localises in the mitochondria, where most hydrogen peroxide is generated. Functional studies: PRDX3 knockdown (induced by silencing RNA against PRDX3) in cerebellar medulloblastoma cells showed significantly decreased cell viability, increased hydrogen peroxide levels and increased susceptibility to apoptosis triggered by reactive oxygen species. In addition, induced knockdown drosophila (in vivo animal model) had aberrant locomotor phenotypes and reduced lifespans, while immunolabelling of the brain showed increased cell death after exposure to oxidative stress. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8583 | PRDX3 |
Hazel Phillimore gene: PRDX3 was added gene: PRDX3 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: PRDX3 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: PRDX3 were set to PMID: 33889951 Phenotypes for gene: PRDX3 were set to cerebellar ataxia (early onset, mild to moderate, progressive) Penetrance for gene: PRDX3 were set to unknown Review for gene: PRDX3 was set to GREEN Added comment: Biallelic variants in 5 unrelated families with early onset (median 21 years , range 13-22 years) with ataxia with variable additional hyper- and hypokinetic movement disorders, and severe early-onset cerebellar atrophy (seen on MRI), and involvement of the brainstem, medullary olive and parietal cortex. Evolution of the disease was gait ataxia leading to upper limb ataxia, then dysarthria and then dysphagia, all within a decade. For some of these patients, the phenotype included myoclonus, dystonia and / or tremor. Mild classical mitochondrial features were seen in one of the patients, namely ptosis and COX-negative fibres. The variants were homozygous nonsense, homozygous frameshift, homozygous missense, and a compound heterozygote of a splice variant and missense, all leading to complete loss of the protein. Oxidative stress and mitochondrial dysfunction was indicated as the disease mechanism. The families originated from Germany, France, India and two from eastern Turkey. The two families from Turkey were seemingly unrelated to each other but had the same homozygous missense. Patient fibroblasts from each of the five probands showed lack of protein (via Western blot) and decreased glutathione peroxidase activity and decreased mitochondrial maximal respiratory capacity. PRXD3 encodes peroxiredoxin 3, a mitochondrial antioxidant protein, that catalyses the reduction of hydrogen peroxide. It localises in the mitochondria, where most hydrogen peroxide is generated. Functional studies: PRDX3 knockdown (induced by silencing RNA against PRDX3) in cerebellar medulloblastoma cells showed significantly decreased cell viability, increased hydrogen peroxide levels and increased susceptibility to apoptosis triggered by reactive oxygen species. In addition, induced knockdown drosophila (in vivo animal model) had aberrant locomotor phenotypes and reduced lifespans, while immunolabelling of the brain showed increased cell death after exposure to oxidative stress. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8542 | IKZF3 |
Zornitza Stark gene: IKZF3 was added gene: IKZF3 was added to Mendeliome. Sources: Expert Review Mode of inheritance for gene: IKZF3 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: IKZF3 were set to 34155405 Phenotypes for gene: IKZF3 were set to Immunodeficiency 84, MIM# 619437 Review for gene: IKZF3 was set to AMBER Added comment: Single family reported where heterozygous missense variant in this gene segregated with immunodeficiency in a mother and two children. Findings included low levels of B cells and impaired early B-cell development, variable T-cell abnormalities, hypogammaglobulinaemia, increased susceptibility to infection with Epstein-Barr virus (EBV). One individual developed lymphoma in adulthood. Mouse model recapitulated phenotype. Sources: Expert Review |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8538 | LCK | Zornitza Stark Phenotypes for gene: LCK were changed from to Immunodeficiency 22 MIM# 615758; Recurrent infections; Immune dysregulation; autoimmunity; Low CD4+; low CD8+; restricted T cell repertoire; poor TCR signaling; Normal IgG/IgA; high IgM; failure to thrive; diarrhoea; lymphopaenia; hypogammaglobulinaemia; anaemia; thrombocytopaenia; CD4+ T-cell lymphopaenia | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8533 | LCK | Zornitza Stark reviewed gene: LCK: Rating: AMBER; Mode of pathogenicity: None; Publications: 22985903, 1579166, 11021796; Phenotypes: Immunodeficiency 22 MIM# 615758, Recurrent infections, Immune dysregulation, autoimmunity, Low CD4+, low CD8+, restricted T cell repertoire, poor TCR signaling, Normal IgG/IgA, high IgM, failure to thrive, diarrhoea, lymphopenia, hypogammaglobulinemia, anaemia, thrombocytopaenia, CD4+ T-cell lymphopenia; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8533 | DOCK8 | Zornitza Stark Phenotypes for gene: DOCK8 were changed from to Hyper-IgE recurrent infection syndrome, autosomal recessive MIM# 243700; T cell Lymphopaenia; decraese T/B/NK cells; Eosinophilia; low IgM; elevated IgE; recurrent cutaneous/ viral/ bacterial/ fungal/ infections; severe atopy/allergic disease; autoimmune haemolytic anaemia; eczema; cancer diathesis | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8530 | DOCK2 | Zornitza Stark Phenotypes for gene: DOCK2 were changed from to Immunodeficiency 40 MIM# 616433; T/B-cell lymphopaenia; early-onset invasive herpes/viral/bacterial Infections; function defects in T/B/NK cells; immunodeficiency; defective IFN-mediated immunity; elevated IgM; normal IgG/IgA levels | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8527 | DOCK2 | Zornitza Stark reviewed gene: DOCK2: Rating: GREEN; Mode of pathogenicity: None; Publications: 26083206, 29204803, 33928462, 30826364, 30838481, 11518968; Phenotypes: Immunodeficiency 40 MIM# 616433, T/B-cell lymphopaenia, early-onset invasive herpes/viral/bacterial Infections, function defects in T/B/NK cells, immunodeficiency, defective IFN-mediated immunity, elevated IgM, normal IgG/IgA levels; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8527 | DOCK8 | Danielle Ariti reviewed gene: DOCK8: Rating: GREEN; Mode of pathogenicity: None; Publications: 19776401, 20622910, 21931011, 26659092, 19898472, 25422492; Phenotypes: Hyper-IgE recurrent infection syndrome, autosomal recessive MIM# 243700, T cell Lymphopaenia, decraese T/B/NK cells, Eosinophilia, low IgM, elevated IgE, recurrent cutaneous/ viral/ bacterial/ fungal/ infections, severe atopy/allergic disease, autoimmune haemolytic anaemia, eczema, cancer diathesisc; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8527 | DNMT3B | Zornitza Stark Phenotypes for gene: DNMT3B were changed from to Immunodeficiency-centromeric instability-facial anomalies syndrome 1 MIM# 242860; facial dysmorphic features; flat nasal bridge; developmental delay; macroglossia; bacterial/opportunistic infections (recurrent); malabsorption; cytopaenia; malignancies; multiradial configurations of chromosomes 1, 9, 16; Hypogammaglobulinaemia; agammaglobulinaemia; variable antibody deficiency; decreased immunoglobulin production; low T/B/NK cells | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8524 | DNMT3B | Zornitza Stark reviewed gene: DNMT3B: Rating: GREEN; Mode of pathogenicity: None; Publications: 20587527, 10555141, 17359920, 9718351, 10647011, 11102980, 12239717; Phenotypes: Immunodeficiency-centromeric instability-facial anomalies syndrome 1 MIM# 242860, facial dysmorphic features, flat nasal bridge, developmental delay, macroglossia, bacterial/opportunistic infections (recurrent), malabsorption, cytopaenia, malignancies, multiradial configurations of chromosomes 1, 9, 16, Hypogammaglobulinaemia, agammaglobulinaemia, variable antibody deficiency, decreased immunoglobulin production, low T/B/NK cells; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8511 | CAMK4 |
Zornitza Stark gene: CAMK4 was added gene: CAMK4 was added to Mendeliome. Sources: Expert Review Mode of inheritance for gene: CAMK4 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: CAMK4 were set to 30262571; 33098801; 33211350 Phenotypes for gene: CAMK4 were set to Intellectual disability; Autism; Behavioral abnormality; Abnormality of movement; Dystonia; Ataxia; Chorea; Myoclonus Review for gene: CAMK4 was set to GREEN Added comment: 3 publications by Zech et al (2018, 2020 - PMIDs : 30262571, 33098801, 33211350) provide clinical details on 3 individuals, each harboring a private de novo CAMK4 variant. Overlapping features included DD, ID, behavoral issues, autism and abnormal hyperkinetic movements. Dystonia and chorea in all 3 appeared 3-20 years after initial symptoms. CAMK4 encodes Calcium/Calmodulin-dependent protein kinase IV, an important mediator of calcium-mediated activity and dynamics, particularly in the brain. It is involved in neuronal transmission, synaptic plasticity, and neuronal gene expression required for brain development and neuronal homeostasis (summary by OMIM based on Zech et al, 2018). The 473 aa enzyme has a protein kinase domain (aa 46-300) and a C-terminal autoregulatory domain (aa 305-341) the latter comprising an autoinhibitory domain (AID / aa 305-321) and a calmodulin-binding domain (CBD / aa 322-341) [NP_001735.1 / NM_001744.4 - also used below]. Variants in all 3 subjects were identified following trio-WES and were in all cases protein-truncating, mapping to exon 10 or exon 10-intron 10 junction, expected to escape NMD and cause selective abrogation of the autoinhibitory domain (aa 305-321) leading overall to gain-of-function. Variation databases include pLoF CAMK4 variants albeit in all cases usptream or downstream of this region (pLI of this gene in gnomAD: 0.51). Variants leading to selective abrogation of the autoregulatory domain have not been reported. Extensive evidence for the GoF effect of the variant has been provided in the first publication. Several previous studies have demonstrated that abrogation of the AID domain leads to consitutive activation (details below). Mouse models - though corresponding to homozygous loss of function - support a role for CAMKIV in cognitive and motor symptoms. Null mice display tremulous and ataxic movements, deficiencies in balance and sensorimotor performance associated with reduced number of Purkinje neurons (Ribar et al 2000, PMID: 11069976 - not reviewed). Wei et al (2002, PMID: 12006982 - not reviewed) provided evidence for alteration in hippocampal physiology and memory function. Heterozygous mutations in other genes for calcium/calmodulin-dependent protein kinases (CAMKs) e.g. CAMK2A/CAMK2B (encoding subunits of CAMKII) have been reported in individuals with ID. --- The proband in the first publication (PMID: 30262571) was a male with DD, ID, behavioral difficulties (ASD, autoaggression, stereotypies) and hyperkinetic movement disorder (myoclonus, chorea, ataxia) with severe generalized dystonia (onset at the age of 13y). Brain MRI demonstrated cerebellar atrophy. Extensive work-up incl. karyotyping, CMA, DYT-TOR1A, THAP1, GCH1, SCA1/2/3/6/7/8/12/17, Friedreich's ataxia and FMR1 analysis was negative.F Trio WES identified a dn splice site variant (c.981+1G>A) in the last exon-intron junction. RT-PCR followed by gel electrophoresis and Sanger in fibroblasts from an affected and control subject revealed that the proband had - as predicted by the type/location of the variant - in equal amount 2 cDNA products, a normal as well as a truncated one. Sequencing of the shortest revealed utilization of a cryptic donor splice site upstream of the mutated donor leading to a 77bp out-of-frame deletion and introduction of a premature stop codon in the last codon (p.Lys303Serfs*28). Western blot in fibroblast cell lines revealed 2 bands corresponding to the normal protein product as well as to the p.Lys303Serfs*28 although expression of the latter was lower than that of the full length protein. Several previous studies have shown that mutant CAMKIV species that lack the autoinhibitory domain are consitutively active (several Refs provided). Among others Chatila et al (1996, PMID: 8702940) studied an in vitro-engineered truncation mutant (Δ1-317 - truncation at position 317 of the protein) with functionally validated gain-of-function effect. To prove enhanced activity of the splicing variant, Zech et al assessed phosphorylation of CREB (cyclic AMP-responsive element binding protein), a downstream substrate of CAMKIV. Immunobloting revealed significant increase of CREB phosphorylation in patient fibroblasts compared to controls. Overactivation of CAMKIV signaling was reversed when cells were treated with STO-609 an inhibitor of CAMKK, the ustream activator of CAMKIV. Overall the authors demonstrated that loss of CAMKIV autoregulatory domain due to this splice variant had a gain-of-function effect. ---- Following trio-WES, Zech et al (2020 - PMID: 33098801) identified another relevant subject within cohort of 764 individuals with dystonia. This 12-y.o. male, harboring a different variant affecting the same donor site (c.981+1G>T), presented DD, ID, dystonia (onset at 3y) and additional movement disorders (myoclonus, ataxia) as well as similar behavior (ASD, autoaggression, stereotypies). [Details in suppl. p20]. ---- Finally Zech et al (2020 - PMID: 33211350) reported on a 24-y.o. woman with adolescence onset choreodystonia. Other features included DD, moderate ID, absence seizures in infancy, OCD with anxiety and later diagnosis of ASD. Trio WES revealed a dn stopgain variant (c.940C>T; p.Gln314*). Sources: Expert Review |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8487 | COL25A1 |
Zornitza Stark edited their review of gene: COL25A1: Added comment: PMID: 2643702 - Patient: 273182 reported in DECIPHER, chet COL25A1 missense variants (listed as Likely Pathogenic). Phenotype includes Duane anomaly of the eye. PMID: 31875546 - Mouse models, including Col25a1 KO and muscle-specific KO mice showed a significant reduction in the number of motor neurons in the cranial nerve nuclei, including the oculomotor, trochlear, trigeminal, and facial motor nuclei. Abnormalities in motor innervation of muscles of the head, such as the extraocular and masseter muscles, were also observed PMID: 31875546 - Functional studies in human cell lines showed that the reported COL25A1 variants (G382R and G497X) impaired the interaction of COL25A1 with receptor protein tyrosine phosphatases, thereby reducing the ability to attract motor axons.; Changed rating: GREEN; Changed publications: 25500261, 26486031, 31875546, 26437029 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8481 | CIITA | Zornitza Stark Phenotypes for gene: CIITA were changed from to Bare Lymphocyte Syndrome, type II, complementation group A MIM# 209920; varied ID; bronchiolitis; pneumonia; severe autoimmune cytopaenia; CD4 T-cell lymphopaenia; hypogammaglobulinemia; absence of antigen-induced immune response; chronic diarrhoea; recurrent respiratory infections; recurrent gastroenteritis; failure to thrive; liver/biliary tract disease | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8478 | CIITA | Zornitza Stark reviewed gene: CIITA: Rating: GREEN; Mode of pathogenicity: None; Publications: 8402893, 9099848, 11862382, 28676232, 24789686, 20197681, 11466404, 15821736, 12910265; Phenotypes: Bare Lymphocyte Syndrome, type II, complementation group A MIM# 209920, varied ID, bronchiolitis, pneumonia, severe autoimmune cytopaenia, CD4 T-cell lymphopaenia, hypogammaglobulinemia, absence of antigen-induced immune response, chronic diarrhoea, recurrent respiratory infections, recurrent gastroenteritis, failure to thrive, liver/biliary tract disease; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8457 | CD27 | Zornitza Stark Phenotypes for gene: CD27 were changed from to Lymphoproliferative syndrome 2; CD27-deficiency MIM# 615122; hepatosplenomegaly; reduced CD8+ T-cell function; lymphadenopathy; hepatosplenomegaly; fever; increased susceptibility to EBV infection; aplastic anaemia | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8454 | CD27 | Zornitza Stark reviewed gene: CD27: Rating: GREEN; Mode of pathogenicity: None; Publications: 22197273, 22801960, 22365582, 25843314, 11062504; Phenotypes: Lymphoproliferative syndrome 2, CD27-deficiency MIM# 615122, hepatosplenomegaly, reduced CD8+ T-cell function, lymphadenopathy, hepatosplenomegaly, fever, increased susceptibility to EBV infection, aplastic anaemia; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8434 | SUFU | Zornitza Stark Phenotypes for gene: SUFU were changed from to Joubert syndrome 32, MIM#617757; SUFU-related neurodevelopmental syndrome; Basal cell nevus syndrome, MIM# 109400 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8431 | SUFU | Zornitza Stark edited their review of gene: SUFU: Changed phenotypes: Joubert syndrome 32, MIM#617757, SUFU-related neurodevelopmental syndrome, Basal cell nevus syndrome, MIM# 109400 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8431 | SUFU | Zornitza Stark changed review comment from: Two unrelated families described with what are postulated to be hypomorphic bi-allelic variants in this gene and Joubert syndrome. Note gene also causes dominant Basal Cell Nevus Syndrome.; to: Two unrelated families described with what are postulated to be hypomorphic bi-allelic variants in this gene and Joubert syndrome. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8431 | SUFU | Zornitza Stark edited their review of gene: SUFU: Added comment: Mono-allelic variants are also associated with Basal cell nevus syndrome/predisposition to medulloblastoma.; Changed rating: GREEN; Changed publications: 28965847, 19533801, 31485359; Changed phenotypes: Joubert syndrome 32, MIM#617757, Basal cell nevus syndrome, MIM# 109400; Changed mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8331 | B2M | Zornitza Stark Phenotypes for gene: B2M were changed from to Immunodeficiency 43 MIM# 241600; Sinopulmonary infections; Purple-red skin lesions; Decreased serum IgG; Decreased B cells; Absent β2m associated proteins MHC-I, CD1a, CD1b, and CD1c; MONDO:0009434; Amyloidosis, familial visceral, MIM# 105200 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8328 | B2M | Zornitza Stark reviewed gene: B2M: Rating: GREEN; Mode of pathogenicity: None; Publications: 4186801, 16549777, 25702838, 11118151, 6165007, 22693999; Phenotypes: Immunodeficiency 43 MIM# 241600, Sinopulmonary infections, Purple-red skin lesions, Decreased serum IgG, Decreased B cells, Absent β2m associated proteins MHC-I, CD1a, CD1b, and CD1c, MONDO:0009434, Amyloidosis, familial visceral, MIM# 105200; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8263 | EPHA7 |
Zornitza Stark gene: EPHA7 was added gene: EPHA7 was added to Mendeliome. Sources: Expert Review Mode of inheritance for gene: EPHA7 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: EPHA7 were set to 34176129 Phenotypes for gene: EPHA7 were set to Intellectual disability Review for gene: EPHA7 was set to AMBER Added comment: Lévy et al (2021 - PMID: 34176129) provide evidence that haploinssuficiency of EPHA7 results in a neurodevelopmental disorder. The authors report on 12 individuals belonging to 9 unrelated families, all harboring with 6q microdeletions spanning EPHA7. Overlapping features included DD (13/13), ID (10/10 - mild in most cases, individuals with larger CNVs/additional variants had more severe phenotype), speech delay and behavioral disorders. Variable other features incl. hypotonia (70%), non specific facial features, eye abnormalities (40%) and cardiac defects (25%). The CNVs ranged from 152 kb to few Mb in size but in 4 subjects (P5-8) were only minimal, involving only EPHA7. 9 out of 12 individuals had inherited the deletion (5 subjects paternal, 4 maternal), in 1 subject (P12) this occured de novo, while for 2 others inheritance was not specified. Most deletions were inherited from an unaffected parent (in 6/7 families), with unclear contribution in a further one. The authors discuss on previous studies suggesting an important role for EphA7 in brain development (modulation of cell-cell adhesion and repulsion, regulation of dendrite morphogenesis in early corticogenesis, role in dendritic spine formation later in development. EphA7 has also been proposed to drive neuronal maturation and synaptic function). Haploinsufficiency for other ephrins or ephrin receptors has been implicated in other NDDs. Overall Lévy et al promote incomplete penetrance and variable expressivity with haploinsufficiency of this gene being a risk factor for NDD. [The gene has also an %HI of 2.76% and a pLI of 1]. Sources: Expert Review |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8165 | RNU12 |
Bryony Thompson gene: RNU12 was added gene: RNU12 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: RNU12 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: RNU12 were set to 34085356; 27863452 Phenotypes for gene: RNU12 were set to CDAGS syndrome MIM#603116; Craniosynostosis, Delayed closure of the fontanelles, cranial defects, clavicular hypoplasia, Anal and Genitourinary malformations, and Skin manifestations Review for gene: RNU12 was set to GREEN Added comment: 5 CDAGS syndrome families with biallelic variants all including NC_000022.10:g.43011402C>T and another variant on the second allele. Whole transcriptome sequencing analysis of patient lymphoblastoid cells identified differentially expressed genes, and differential alternative splicing analysis indicated there was an enrichment of alternative splicing events. Also, limited evidence for an association with cerebellar ataxia with a single large consanguineous family reported with a homozygous variant. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8002 | SEMA3F |
Zornitza Stark gene: SEMA3F was added gene: SEMA3F was added to Mendeliome. Sources: Literature Mode of inheritance for gene: SEMA3F was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: SEMA3F were set to 33495532 Phenotypes for gene: SEMA3F were set to Hypogonadotropic hypogonadism Review for gene: SEMA3F was set to GREEN Added comment: Screened 216 patients with Idiopathic hypogonadotropic hypogonadism by exome sequencing. Identified 10 individuals from 7 families with heterozygous SEMA3F missense variants. In 4 of the kindreds, there was at least one more gene known to be associated with IHH (oligogenecity). Provide unequivocal human embryonic data showing the expression of SEMA3F along the developing human GnRH migratory pathway. SEMA3Fs harboring the P452T, T29M, and T724M missense variants showed impaired SEMA3F secretion in whole cell lysates. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.8000 | PLXNA3 |
Zornitza Stark gene: PLXNA3 was added gene: PLXNA3 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: PLXNA3 was set to X-LINKED: hemizygous mutation in males, biallelic mutations in females Publications for gene: PLXNA3 were set to 33495532 Phenotypes for gene: PLXNA3 were set to Hypogonadotropic hypogonadism Review for gene: PLXNA3 was set to GREEN Added comment: Screened 216 patients with Idiopathic hypogonadotropic hypogonadism by exome sequencing. Identified 7 individuals from 5 families with hemizygous PLXNA3 missense variants. In 2 of the kindreds, there was at least one more gene known to be associated with IHH (oligogenecity). Data provided with evidence that PLXNA3, a key component of the SEMA3F holoreceptor complex,31 is expressed by the human GnRH and olfactory/vomeronasal systems. S646P variant showed PLXNA3 localization exclusively in the ER, indicating that the variant S646P disrupts cell surface localization of PLXNA3. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.7993 | FARSA | Zornitza Stark edited their review of gene: FARSA: Added comment: Schuch et al. (2021) report 3 unrelated individuals with bi-allelic variants in FARSA. Identified through WES and variants segregated with disease. Functional evidence was obtained with reduced FARS1 enzyme activity levels in fibroblasts or EBV-transformed lymphoblastoid cell lines (EBV-LCLs) of patients. Common to all was a chronic interstitial lung disease starting early in life and characterized by bilateral ground-glass opacification on HR-CT, and cholesterol pneumonitis in lung histology. Additional abnormalities in other organ systems include liver disease, neurological manifestations, and growth restriction.; Changed rating: GREEN; Changed publications: 31355908, 33598926; Changed phenotypes: Rajab interstitial lung disease with brain calcifications 2, MIM# 619013 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.7986 | RELN |
Ee Ming Wong edited their review of gene: RELN: Added comment: - Six affected individuals carrying missense variants in RELN including 1. Two individuals with compound heterozygous variants - One of the variants has 26 homozygotes in gnomAD and therefore pathogenicity of this variant is in question - LoF demonstrated for three of the variants (reduced RELN secretion), except for p.Y1821H which demonstrated an apparently increased RELN secretion (GoF) 2. Two brothers carrying the maternally inherited variant (mother apparently healthy) - LoF demonstrated for these variants 3. Two individuals de novo for RELN variants - Dominant negative demonstrated for these variants where secretion of WT-RELN was impaired when co-transfected with mutant constructs in HEK293T cells; Changed rating: AMBER; Changed publications: Riva et al bioRxiv (pre-print, not peer-reviewed); Changed phenotypes: Pachygyria, Polymicrogyria, Heterotopia; Changed mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.7946 | PARP6 | Zornitza Stark Publications for gene: PARP6 were set to Cells 2021, 10(6), 1289; https://doi.org/10.3390/cells10061289 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.7944 | SCN7A |
Zornitza Stark gene: SCN7A was added gene: SCN7A was added to Mendeliome. Sources: Literature Mode of inheritance for gene: SCN7A was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: SCN7A were set to 32732226 Phenotypes for gene: SCN7A were set to Holoprosencephaly Review for gene: SCN7A was set to RED Added comment: Novel candidate gene identified in a fetus with holoprosencephaly detected by ultrasound. Autopsy showed multiple congenital abnormalities including IUGR, microcephaly, bilateral, ablepharon, corpus callosum agenesis, myelomeningocele, tracheal atresia, absent nipples, unilateral simian crease, and hypoplastic phalanges. Compound heterozygous variants including a truncating variant were found by exome sequencing with concordant segregation. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.7891 | PGM2L1 |
Chern Lim gene: PGM2L1 was added gene: PGM2L1 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: PGM2L1 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: PGM2L1 were set to 33979636 Phenotypes for gene: PGM2L1 were set to severe developmental and speech delay, dysmorphic facial features, ear anomalies, high arched palate, strabismus, hypotonia, and keratosis pilaris Review for gene: PGM2L1 was set to GREEN gene: PGM2L1 was marked as current diagnostic Added comment: PMID: 33979636: - Hom/chet PTVs in 4 unrelated individuals. All four affected individuals had severe developmental and speech delay, dysmorphic facial features, ear anomalies, high arched palate, strabismus, hypotonia, and keratosis pilaris. Early obesity and seizures were present in three individuals. - Studies on patient fibroblasts and cell lines indicated that PGM2L1 deficiency causes a decrease, but not a disappearance, of the sugar bisphosphates needed for the formation of NDP-sugars and that there is no evidence that this leads to a glycosylation defect. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.7749 | MCM7 |
Arina Puzriakova gene: MCM7 was added gene: MCM7 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: MCM7 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: MCM7 were set to 33654309; 34059554 Phenotypes for gene: MCM7 were set to Meier-Gorlin syndrome; Microcephaly; Intellectual disability; Lipodystrophy; Adrenal insufficiency Review for gene: MCM7 was set to AMBER Added comment: MCM7 is a component of the MCM complex, a DNA helicase which is essential for DNA replication. Other components have been linked to disease with phenotypes including microcephaly and ID. MCM7 is not associated with any phenotype in OMIM or G2P at present. ------ Currently there are 3 unrelated pedigrees in literature with different biallelic MCM7 variants associated with disease (see below). Although there is some functional data in support of variant-level deleteriousness or gene-level pathogenicity, the clinical gestalt is very different between the 3 families. - PMID: 33654309 (2021) - Two unrelated individuals with different compound het variants in MCM7 but disparate clinical features. One patient had typical Meier-Gorlin syndrome (including growth retardation, microcephaly, congenital lung emphysema, absent breast development, microtia, facial dysmorphism) whereas the second case had a multi-system disorder with neonatal progeroid appearance, lipodystrophy and adrenal insufficiency. While small at birth, the second patient did not demonstrate reduced stature or microcephaly at age 14.5 years. Both individuals had normal neurodevelopment. Functional studies using patient-derived fibroblasts demonstrate that the identified MCM7 variants were deleterious at either transcript or protein levels and through interfering with MCM complex formation, impact efficiency of S phase progression. - PMID: 34059554 (2021) - Homozygous missense variant identified in three affected individuals from a consanguineous family with severe primary microcephaly, severe ID and behavioural abnormalities. Knockdown of Mcm7 in mouse neuroblastoma cells lead to reduced cell viability and proliferation with increased apoptosis, which were rescued by overexpression of wild-type but not mutant MCM7. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.7740 | LHCGR | Zornitza Stark Phenotypes for gene: LHCGR were changed from to Luteinizing hormone resistance, female, (MIM#238320); Leydig cell hypoplasia with pseudohermaphroditism, (MIM#238320); Leydig cell hypoplasia with hypergonadotropic hypogonadism, (MIM#238320); Precocious puberty, male, (MIM#176410) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.7735 | LHCGR | Ain Roesley reviewed gene: LHCGR: Rating: GREEN; Mode of pathogenicity: None; Publications: 11041448; Phenotypes: Luteinizing hormone resistance, female, (MIM#238320), Leydig cell hypoplasia with pseudohermaphroditism, (MIM#238320), Leydig cell hypoplasia with hypergonadotropic hypogonadism, (MIM#238320), Precocious puberty, male, (MIM#176410); Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.7680 | PARP6 |
Zornitza Stark gene: PARP6 was added gene: PARP6 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: PARP6 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: PARP6 were set to Cells 2021, 10(6), 1289; https://doi.org/10.3390/cells10061289 Phenotypes for gene: PARP6 were set to Intellectual disability; Epilepsy; Microcephaly Review for gene: PARP6 was set to GREEN Added comment: Four unrelated individuals reported with de novo variants in this gene and a neurodevelopmental phenotype. Supportive functional data. One pair of siblings with a homozygous missense: limited evidence for bi-allelic variants causing disease. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.7629 | CELSR1 | Zornitza Stark Marked gene: CELSR1 as ready | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.7629 | CELSR1 | Zornitza Stark Gene: celsr1 has been classified as Green List (High Evidence). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.7629 | CELSR1 | Zornitza Stark Classified gene: CELSR1 as Green List (high evidence) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.7629 | CELSR1 | Zornitza Stark Gene: celsr1 has been classified as Green List (High Evidence). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.7628 | CELSR1 |
Zornitza Stark gene: CELSR1 was added gene: CELSR1 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: CELSR1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: CELSR1 were set to 31215153; 31403174; 26855770 Phenotypes for gene: CELSR1 were set to Lymphatic malformation 9, MIM# 619319 Review for gene: CELSR1 was set to GREEN Added comment: 3 unrelated families reported. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.7488 | OCRL |
Eleanor Williams changed review comment from: PMID: 33517444 - Ramadesikan et al 2021 - studied the cellular effect of 7 OCRL1 (OCRL) variants identified in Lowe Syndrome patients in kidney epithelial cells. Differences in cell spreading, ciliogenesis, protein localization and degree of Golgi apparatus fragmentation were observed. The results help provide a framework to explains symptom heterogeneity and may help stratify patients.; to: Genotype/Phenotype information: PMID: 33517444 - Ramadesikan et al 2021 - studied the cellular effect of 7 OCRL1 (OCRL) variants identified in Lowe Syndrome patients in kidney epithelial cells. Differences in cell spreading, ciliogenesis, protein localization and degree of Golgi apparatus fragmentation were observed. The results help provide a framework to explains symptom heterogeneity and may help stratify patients. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.7464 | VPS41 |
Kristin Rigbye changed review comment from: "Five unrelated families with nine affected individuals, all carrying homozygous variants in VPS41 that we show impact protein function. All affected individuals presented with a progressive neurodevelopmental disorder consisting of cognitive impairment, cerebellar atrophy/hypoplasia, motor dysfunction with ataxia and dystonia, and nystagmus. Zebrafish disease modelling supports the involvement of VPS41 dysfunction in the disorder, indicating lysosomal dysregulation throughout the brain and providing support for cerebellar and microglial abnormalities when vps41 was mutated. This provides the first example of human disease linked to the HOPS-specific subunit VPS41 and suggests the importance of HOPS complex activity for cerebellar function."; to: "Five unrelated families with nine affected individuals, all carrying homozygous variants in VPS41 that we show impact protein function. All affected individuals presented with a progressive neurodevelopmental disorder consisting of cognitive impairment, cerebellar atrophy/hypoplasia, motor dysfunction with ataxia and dystonia, and nystagmus. Zebrafish disease modelling supports the involvement of VPS41 dysfunction in the disorder, indicating lysosomal dysregulation throughout the brain and providing support for cerebellar and microglial abnormalities when vps41 was mutated. This provides the first example of human disease linked to the HOPS-specific subunit VPS41 and suggests the importance of HOPS complex activity for cerebellar function." "Affected individuals were born after uneventful pregnancies and presented in most cases early in life with developmental delay. Various degrees of ataxia, hypotonia, and dystonia were present in all affected individuals, preventing independent ambulation. Likewise, nystagmus was commonly described. In addition, all affected individuals displayed intellectual disability and speech delay. Two siblings further presented with therapy-resistant epilepsy. No major dysmorphic features were found. In two individuals, retinal pigment alterations were noticed. Brain MRI revealed mild cerebellar atrophy and vermian atrophy without other major structural abnormalities in most affected individuals while in one case (Subject 9) bilateral hyperintensities at the nucleus caudatus area were noted. No hearing or vision problems were noted and in cases where nerve conduction studies were performed, these were normal. Transmission electron microscopy (TEM) on peripheral blood lymphocytes from Subject 2 and lymphoblastoid cells from Subject 3 revealed more multilayered vesicles compared to control cells." |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.7358 | JMJD1C |
Zornitza Stark gene: JMJD1C was added gene: JMJD1C was added to Mendeliome. Sources: Expert Review Mode of inheritance for gene: JMJD1C was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: JMJD1C were set to 26181491; 32996679 Phenotypes for gene: JMJD1C were set to Intellectual disability Review for gene: JMJD1C was set to GREEN Added comment: Reported in ID cohort (with Rett-like phenotypic overlap) with supporting functional studies (PMID: 26181491). 7 individuals with rare variants identified, and variants demonstrated to be de novo in 2, one with a Rett-like phenotype and the other with ID. Functional study of the JMJD1C mutant Rett syndrome patient demonstrated that the altered protein had abnormal subcellular localization, diminished activity to demethylate the DNA damage-response protein MDC1, and reduced binding to MECP2. JMJD1C protein shown to be widely expressed in brain regions and that its depletion compromised dendritic activity. Splice-disrupting JMJD1C variant reported in association with learning disability and myoclonic epilepsy (PMID 32996679). Disruption of gene due to balanced translocation (PMID 33591602) implicated in autism spectrum disease phenotype. Sources: Expert Review |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.7346 | GCGR |
Zornitza Stark gene: GCGR was added gene: GCGR was added to Mendeliome. Sources: Expert list Mode of inheritance for gene: GCGR was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: GCGR were set to 19657311; 25695890; 27933176; 30032256; 30294546 Phenotypes for gene: GCGR were set to Mahvash disease, MIM# 619290 Review for gene: GCGR was set to GREEN Added comment: Mahvash disease (MVAH) is caused by inactivating mutations in the glucagon receptor, leading to alpha-cell hyperplasia of the pancreas, hyperglucagonaemia without glucagonoma syndrome, and occasional hypoglycaemia. The disease may lead to glucagonomas and/or primitive neuroectodermal tumours. More than 5 unrelated families reported. Sources: Expert list |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.7343 | ABCB6 | Zornitza Stark Phenotypes for gene: ABCB6 were changed from to Pseudohyperkalemia, familial, 2, due to red cell leak, MIM# 609153; Microphthalmia, isolated, with coloboma 7, MIM# 614497; Dyschromatosis universalis hereditaria 3, MIM# 615402 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.7340 | ABCB6 | Zornitza Stark reviewed gene: ABCB6: Rating: GREEN; Mode of pathogenicity: None; Publications: 23180570; Phenotypes: Pseudohyperkalemia, familial, 2, due to red cell leak, MIM# 609153, Microphthalmia, isolated, with coloboma 7, MIM# 614497, Dyschromatosis universalis hereditaria 3, MIM# 615402; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.7249 | NDUFB11 |
Kristin Rigbye changed review comment from: Variable syndromic features have been observed in affected individuals, however anaemia and cardiomyopathy appear to be consistent features in males and females, respectively (PMID: 28050600, PMID: 30423443, PMID: 27488349). Affected females have previously been reported with inherited pathogenic variants from their unaffected mothers. It has been suggested that this may be due to patterns of somatic X-chromosome inactivation, mosaicism or additional genetic or external factors (PMID: 28050600). Affected females have been reported with null alleles, whereas affected males have only been identified with missense variants or a recurrent single residue in-frame deletion, suggesting that some residual enzyme activity is required for males to be viable, whereas complete loss of function variants may be lethal when hemizygous (PMID: 30423443). Note: female carriers of missense variants have not been reported as clinically affected. Western blots from cells of male patients with the recurrent F93del variant showed reduced protein levels, and recombinant cells demonstrated a proliferation defect, consistent with the anaemia phenotype (PMID: 27488349).; to: Variable syndromic features have been observed in affected individuals, however anaemia and cardiomyopathy appear to be consistent features in males and females, respectively (PMID: 28050600, PMID: 30423443, PMID: 27488349). It has been suggested that heterozygous females do not display the severe phenotype associated with mitochondrial complex 1 deficiency due to highly skewed XCI favouring expression of the wild type allele, whereas these null variants result in a severe lethal disorder in hemizygous males (PMID: 25772934). Affected females have previously been reported with inherited pathogenic variants from their unaffected mothers. It has been suggested that this may be due to patterns of somatic X-chromosome inactivation, mosaicism or additional genetic or external factors (PMID: 28050600). Affected females have been reported with null alleles, whereas affected males have only been identified with missense variants or a recurrent single residue in-frame deletion, suggesting that some residual enzyme activity is required for males to be viable, whereas complete loss of function variants may be lethal when hemizygous (PMID: 30423443). Note: female carriers of missense variants have not been reported as clinically affected. Western blots from cells of male patients with the recurrent F93del variant showed reduced protein levels, and recombinant cells demonstrated a proliferation defect, consistent with the anaemia phenotype (PMID: 27488349). |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.7192 | ADCY6 |
Zornitza Stark changed review comment from: Laquerriere et al. (2014): 2 sibs from a consanguineous family with an axoglial form of lethal congenital contracture syndrome, and homozygous missense ADCY6 mutation (R1116C). The parents were heterozygous for the mutation. Knocked down ADCY6 orthologs in zebrafish showed a loss of myelin basic protein expression in the peripheral nervous system but no defects in Schwann cell migration and axonal growth. Gonzaga‐Jauregui et al. (2015): 1 patient with congenital hypotonia, distal joint contractures, hypomyelinating neuropathy, and vocal cord paralysis, and a homozygous missense ADCY6 variant. No functional studies. Deceased sister with a similar phenotype with hypotonia, areflexia, and hypomyelinating neuropathy who died at 18 months of respiratory insufficiency. Agolini et al. (2020): 1 patient with severe form of AMC, with two novel compound heterozygous variants in ADCY6 (parents confirmed carriers), but no functional studies. Sources: Literature; to: - PMID: 33820833 (2021) - Further 2 sibs reported with a homozygous c.3346C>T:p.Arg1116Cys variant in the ADCY6 gene. The family was identified from a cohort of 315 genetically undiagnosed and unrelated AMC families. Arthrogryposis and IUGR were detected prenatally. Laquerriere et al. (2014): 2 sibs from a consanguineous family with an axoglial form of lethal congenital contracture syndrome, and homozygous missense ADCY6 mutation (R1116C). The parents were heterozygous for the mutation. Knocked down ADCY6 orthologs in zebrafish showed a loss of myelin basic protein expression in the peripheral nervous system but no defects in Schwann cell migration and axonal growth. Gonzaga‐Jauregui et al. (2015): 1 patient with congenital hypotonia, distal joint contractures, hypomyelinating neuropathy, and vocal cord paralysis, and a homozygous missense ADCY6 variant. No functional studies. Deceased sister with a similar phenotype with hypotonia, areflexia, and hypomyelinating neuropathy who died at 18 months of respiratory insufficiency. Agolini et al. (2020): 1 patient with severe form of AMC, with two novel compound heterozygous variants in ADCY6 (parents confirmed carriers), but no functional studies. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.7180 | MAPKAPK5 |
Zornitza Stark gene: MAPKAPK5 was added gene: MAPKAPK5 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: MAPKAPK5 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: MAPKAPK5 were set to 3344202 Phenotypes for gene: MAPKAPK5 were set to Developmental delay, variable brain anomalies, congenital heart defects, dysmorphic Review for gene: MAPKAPK5 was set to GREEN Added comment: 3 individuals from 2 families with severe developmental delay, variable brain anomalies, congenital heart defects, dysmorphic facial features, and a distinctive type of synpolydactyly with an additional hypoplastic digit between the fourth and fifth digits of hands and/or feet. Exome sequencing identified different homozygous truncating variants in MAPKAPK5 in both families, segregating with disease and unaffected parents as carriers. Patient-derived cells showed no expression of MAPKAPK5 protein isoforms and reduced levels of the MAPKAPK5-interacting protein ERK3. F-actin recovery after latrunculin B treatment was found to be less efficient in patient-derived fibroblasts than in control cells, supporting a role of MAPKAPK5 in F-actin polymerization. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.7172 | FAT1 |
Ee Ming Wong changed review comment from: - 5 consanguineous families with homozygous frameshift mutations in FAN1 - FAN1 KO mice had microphthalmia, with fully penetrant coloboma which was not observed in heterozygous mice - in human retinal pigment epithelium (RPE) cells, FAN1 knockdown resulted in compromised early cell-cell junction integrity and filament organisation; to: - 5 consanguineous families with homozygous frameshift mutations in FAT1 - FAT1 KO mice had microphthalmia, with fully penetrant coloboma which was not observed in heterozygous mice - in human retinal pigment epithelium (RPE) cells, FAT1 knockdown resulted in compromised early cell-cell junction integrity and filament organisation |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.7166 | SMPD1 |
Zornitza Stark changed review comment from: Well established gene-disease association.; to: Niemann-Pick disease (NPD) refers to a group of disorders that present with varying degrees of lipid storage and foam cell infiltration in tissues, as well as overlapping clinical features including hepatosplenomegaly, pulmonary insufficiency and/or central nervous system (CNS) involvement. Type A NPD patients exhibit hepatosplenomegaly in infancy and profound CNS involvement. They rarely survive beyond 2-3years of age. Type B patients also have hepatosplenomegaly and pathologic alterations of their lungs, but there are usually no CNS signs. The age of onset and rate of disease progression varies greatly among type B patients, and they frequently live into adulthood. Intermediate patients also have been reported with mild to moderate neurological findings. Well established gene-disease association. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.7121 | SYK |
Paul De Fazio gene: SYK was added gene: SYK was added to Mendeliome. Sources: Literature Mode of inheritance for gene: SYK was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown Publications for gene: SYK were set to 33782605 Phenotypes for gene: SYK were set to Immune dysregulation and systemic inflammation Mode of pathogenicity for gene: SYK was set to Other Review for gene: SYK was set to GREEN gene: SYK was marked as current diagnostic Added comment: 5 unrelated patients with monoallelic missense variants in SYK with immune deficiency, multi-organ inflammatory disease such as colitis, arthritis and dermatitis, and diffuse large B cell lymphomas. 2 patients were confirmed de novo, others were undetermined. Variants exhibited a GoF effect in functional studies. A knock-in mouse model of a patient variant recapitulated aspects of the human disease. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.7080 | NDUFB7 |
Bryony Thompson gene: NDUFB7 was added gene: NDUFB7 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: NDUFB7 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: NDUFB7 were set to 33502047; 27626371 Phenotypes for gene: NDUFB7 were set to Congenital lactic acidosis; hypertrophic cardiomyopathy Review for gene: NDUFB7 was set to AMBER Added comment: Single patient with a homozygous variant impacting RNA splicing (c.113-10C>G) with intrauterine growth restriction and anaemia, which displayed postpartum hypertrophic cardiomyopathy, lactic acidosis, encephalopathy, and a severe complex I defect with fatal outcome. Also, a supporting knockout cell line model demonstrating impaired complex I assembly. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.7079 | CELA3B | Bryony Thompson Marked gene: CELA3B as ready | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.7079 | CELA3B | Bryony Thompson Gene: cela3b has been classified as Amber List (Moderate Evidence). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.7079 | CELA3B | Bryony Thompson Classified gene: CELA3B as Amber List (moderate evidence) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.7079 | CELA3B | Bryony Thompson Gene: cela3b has been classified as Amber List (Moderate Evidence). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.7075 | CELA3B |
Bryony Thompson gene: CELA3B was added gene: CELA3B was added to Mendeliome. Sources: Literature Mode of inheritance for gene: CELA3B was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: CELA3B were set to 31369399; 33565216 Phenotypes for gene: CELA3B were set to Chronic pancreatitis Mode of pathogenicity for gene: CELA3B was set to Other Review for gene: CELA3B was set to AMBER Added comment: PMID: 33565216 - p.Arg90Cys (c.268C>T) identified in a chronic pancreatitis (also diabetes and pancreatic adenocarcinoma present in some individuals) pedigree. Variant was present in 2 affected individuals and not present in 7 healthy relatives. Also, supporting in vitro functional assays demonstrating gain of function mechanism for R90C and R90L, and supporting mouse model. PMID: 31369399 - p.Arg90Leu (c.269G>T) identified in 4 French chronic pancreatitis cases and 0 controls. However, there are 229 hets in gnomAD v2.1 with this variant. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.7004 | PRIM1 |
Zornitza Stark changed review comment from: - PMID: 33060134 (2020) - From a cohort of 220 families with microcephalic dwarfism spectrum disorders (OFC ≤−4 SD; height ≤−2 SD), three families (4 individuals) were identified with the same homozygous intronic variant (c.638+36C>G) in PRIM1. This variant was present in gnomAD in 2 individuals across all populations, but only in a heterozygous state. Haplotype analysis indicated that all three families share a distant common ancestor - i.e. confirmed founder variant. Authors subsequently identified a single individual with compound heterozygous PRIM1 variants (c.103+1G>T, c.901T>C) from the DDD study, who also presented microcephaly and short stature (OFC ≤−3 SD; height ≤−3 SD). Clinical overlap was evident in all 5 individuals, presenting extreme pre- and postnatal growth restriction, severe microcephaly (OFC −6.0 ± 1.5 SD) with simplified gyri appearance, hypothyroidism, hypo/agammaglobulinaemia, and lymphopaenia accompanied by intermittent anaemia/thrombocytopaenia. All had chronic respiratory symptoms, and four died in early childhood from respiratory or GI infections. Functional studies demonstrated reduced PRIM1 protein levels, replication fork defects and prolonged S-phase duration in PRIM1-deficient cells. The resulting delay to the cell cycle and inability to sustain sufficient cell proliferation provides a likely mechanism for the presenting phenotype. Sources: Literature; to: - PMID: 33060134 (2020) - From a cohort of 220 families with microcephalic dwarfism spectrum disorders (OFC ≤−4 SD; height ≤−2 SD), three families (4 individuals) were identified with the same homozygous intronic variant (c.638+36C>G) in PRIM1. This variant was present in gnomAD in 2 individuals across all populations, but only in a heterozygous state. Haplotype analysis indicated that all three families share a distant common ancestor - i.e. confirmed founder variant. Authors subsequently identified a single individual with compound heterozygous PRIM1 variants (c.103+1G>T, c.901T>C) from the DDD study, who also presented microcephaly and short stature (OFC ≤−3 SD; height ≤−3 SD). Clinical overlap was evident in all 5 individuals, presenting extreme pre- and postnatal growth restriction, severe microcephaly (OFC −6.0 ± 1.5 SD) with simplified gyri appearance, hypothyroidism, hypo/agammaglobulinaemia, and lymphopaenia accompanied by intermittent anaemia/thrombocytopaenia. All had chronic respiratory symptoms, and four died in early childhood from respiratory or GI infections. Functional studies demonstrated reduced PRIM1 protein levels, replication fork defects and prolonged S-phase duration in PRIM1-deficient cells. The resulting delay to the cell cycle and inability to sustain sufficient cell proliferation provides a likely mechanism for the presenting phenotype. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.7003 | PRIM1 |
Zornitza Stark changed review comment from: - PMID: 33060134 (2020) - From a cohort of 220 families with microcephalic dwarfism spectrum disorders (OFC ≤−4 SD; height ≤−2 SD), three families (4 individuals) were identified with the same homozygous intronic variant (c.638+36C>G) in PRIM1. This variant was present in gnomAD in 2 individuals across all populations, but only in a heterozygous state. Haplotype analysis indicated that all three families share a distant common ancestor - i.e. confirmed founder variant. Authors subsequently identified a single individual with compound heterozygous PRIM1 variants (c.103+1G>T, c.901T>C) from the DDD study, who also presented microcephaly and short stature (OFC ≤−3 SD; height ≤−3 SD). Clinical overlap was evident in all 5 individuals, presenting extreme pre- and postnatal growth restriction, severe microcephaly (OFC −6.0 ± 1.5 SD) with simplified gyri appearance, hypothyroidism, hypo/agammaglobulinemia, and lymphopenia accompanied by intermittent anaemia/thrombocytopaenia. All had chronic respiratory symptoms, and four died in early childhood from respiratory or GI infections. Functional studies demonstrated reduced PRIM1 protein levels, replication fork defects and prolonged S-phase duration in PRIM1-deficient cells. The resulting delay to the cell cycle and inability to sustain sufficient cell proliferation provides a likely mechanism for the presenting phenotype. Sources: Literature; to: - PMID: 33060134 (2020) - From a cohort of 220 families with microcephalic dwarfism spectrum disorders (OFC ≤−4 SD; height ≤−2 SD), three families (4 individuals) were identified with the same homozygous intronic variant (c.638+36C>G) in PRIM1. This variant was present in gnomAD in 2 individuals across all populations, but only in a heterozygous state. Haplotype analysis indicated that all three families share a distant common ancestor - i.e. confirmed founder variant. Authors subsequently identified a single individual with compound heterozygous PRIM1 variants (c.103+1G>T, c.901T>C) from the DDD study, who also presented microcephaly and short stature (OFC ≤−3 SD; height ≤−3 SD). Clinical overlap was evident in all 5 individuals, presenting extreme pre- and postnatal growth restriction, severe microcephaly (OFC −6.0 ± 1.5 SD) with simplified gyri appearance, hypothyroidism, hypo/agammaglobulinaemia, and lymphopaenia accompanied by intermittent anaemia/thrombocytopaenia. All had chronic respiratory symptoms, and four died in early childhood from respiratory or GI infections. Functional studies demonstrated reduced PRIM1 protein levels, replication fork defects and prolonged S-phase duration in PRIM1-deficient cells. The resulting delay to the cell cycle and inability to sustain sufficient cell proliferation provides a likely mechanism for the presenting phenotype. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.7003 | PRIM1 |
Zornitza Stark changed review comment from: - PMID: 33060134 (2020) - From a cohort of 220 families with microcephalic dwarfism spectrum disorders (OFC ≤−4 SD; height ≤−2 SD), three families (4 individuals) were identified with the same homozygous intronic variant (c.638+36C>G) in PRIM1. This variant was present in gnomAD in 2 individuals across all populations, but only in a heterozygous state. Haplotype analysis indicated that all three families share a distant common ancestor - i.e. confirmed founder variant. Authors subsequently identified a single individual with compound heterozygous PRIM1 variants (c.103+1G>T, c.901T>C) from the DDD study, who also presented microcephaly and short stature (OFC ≤−3 SD; height ≤−3 SD). Clinical overlap was evident in all 5 individuals, presenting extreme pre- and postnatal growth restriction, severe microcephaly (OFC −6.0 ± 1.5 SD) with simplified gyri appearance, hypothyroidism, hypo/agammaglobulinemia, and lymphopenia accompanied by intermittent anaemia/thrombocytopenia. All had chronic respiratory symptoms, and four died in early childhood from respiratory or GI infections. Functional studies demonstrated reduced PRIM1 protein levels, replication fork defects and prolonged S-phase duration in PRIM1-deficient cells. The resulting delay to the cell cycle and inability to sustain sufficient cell proliferation provides a likely mechanism for the presenting phenotype. Sources: Literature; to: - PMID: 33060134 (2020) - From a cohort of 220 families with microcephalic dwarfism spectrum disorders (OFC ≤−4 SD; height ≤−2 SD), three families (4 individuals) were identified with the same homozygous intronic variant (c.638+36C>G) in PRIM1. This variant was present in gnomAD in 2 individuals across all populations, but only in a heterozygous state. Haplotype analysis indicated that all three families share a distant common ancestor - i.e. confirmed founder variant. Authors subsequently identified a single individual with compound heterozygous PRIM1 variants (c.103+1G>T, c.901T>C) from the DDD study, who also presented microcephaly and short stature (OFC ≤−3 SD; height ≤−3 SD). Clinical overlap was evident in all 5 individuals, presenting extreme pre- and postnatal growth restriction, severe microcephaly (OFC −6.0 ± 1.5 SD) with simplified gyri appearance, hypothyroidism, hypo/agammaglobulinemia, and lymphopenia accompanied by intermittent anaemia/thrombocytopaenia. All had chronic respiratory symptoms, and four died in early childhood from respiratory or GI infections. Functional studies demonstrated reduced PRIM1 protein levels, replication fork defects and prolonged S-phase duration in PRIM1-deficient cells. The resulting delay to the cell cycle and inability to sustain sufficient cell proliferation provides a likely mechanism for the presenting phenotype. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.7003 | PRIM1 |
Zornitza Stark gene: PRIM1 was added gene: PRIM1 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: PRIM1 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: PRIM1 were set to 33060134 Phenotypes for gene: PRIM1 were set to Microcephalic primordial dwarfism, MONDO:0017950 Review for gene: PRIM1 was set to AMBER Added comment: - PMID: 33060134 (2020) - From a cohort of 220 families with microcephalic dwarfism spectrum disorders (OFC ≤−4 SD; height ≤−2 SD), three families (4 individuals) were identified with the same homozygous intronic variant (c.638+36C>G) in PRIM1. This variant was present in gnomAD in 2 individuals across all populations, but only in a heterozygous state. Haplotype analysis indicated that all three families share a distant common ancestor - i.e. confirmed founder variant. Authors subsequently identified a single individual with compound heterozygous PRIM1 variants (c.103+1G>T, c.901T>C) from the DDD study, who also presented microcephaly and short stature (OFC ≤−3 SD; height ≤−3 SD). Clinical overlap was evident in all 5 individuals, presenting extreme pre- and postnatal growth restriction, severe microcephaly (OFC −6.0 ± 1.5 SD) with simplified gyri appearance, hypothyroidism, hypo/agammaglobulinemia, and lymphopenia accompanied by intermittent anaemia/thrombocytopenia. All had chronic respiratory symptoms, and four died in early childhood from respiratory or GI infections. Functional studies demonstrated reduced PRIM1 protein levels, replication fork defects and prolonged S-phase duration in PRIM1-deficient cells. The resulting delay to the cell cycle and inability to sustain sufficient cell proliferation provides a likely mechanism for the presenting phenotype. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.6998 | MCM10 | Zornitza Stark edited their review of gene: MCM10: Added comment: PMID 33712616: second family reported, three affected sibs with restrictive cardiomyopathy and hypoplasia of the spleen and thymus. Functional data suggested that MCM10 deficiency causes chronic replication stress that reduces cell viability due to increased genomic instability and telomere erosion.; Changed publications: 32865517, 33712616; Changed phenotypes: Susceptibility to CMV, Restrictive cardiomyopathy | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.6927 | CD4 | Zornitza Stark Phenotypes for gene: CD4 were changed from to Immunodeficiency 79, MIM# 619238; Absence of CD4+ T cells; exuberant, relapsing, treatment-refractory warts | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.6924 | CD4 | Zornitza Stark edited their review of gene: CD4: Changed rating: GREEN; Changed publications: 31781092, 33471124; Changed phenotypes: Immunodeficiency 79, MIM# 619238, Absence of CD4+ T cells, exuberant, relapsing, treatment-refractory warts | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.6893 | IPO8 |
Zornitza Stark gene: IPO8 was added gene: IPO8 was added to Mendeliome. Sources: Expert Review Mode of inheritance for gene: IPO8 was set to BIALLELIC, autosomal or pseudoautosomal Phenotypes for gene: IPO8 were set to Loeys-Dietz syndrome-like; cardiovascular, neurologic, skeletal and immunologic abnormalities Review for gene: IPO8 was set to AMBER Added comment: 12 individuals from 9 unrelated families in a cohort submitted for publication with bi-allelic IPO8 variants. Variants were nonsense/splice and some missense. Patients displayed a phenotype reminiscent of Loeys Dietz syndrome that variably combined cardiovascular, neurologic, skeletal and immunologic abnormalities along with dysmorphic features. Western blot on patient cells (4 individuals) showed reduced IPO8 expression. Disruption of IPO8 homologue in zebrafish associated with cardiac anomalies. Transcriptome analysis in zebrafish showed that IPO8-deficient zebrafish had abnormal TGFbeta pathway expression. Sources: Expert Review |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.6793 | MPEG1 |
Zornitza Stark gene: MPEG1 was added gene: MPEG1 was added to Mendeliome. Sources: Expert list Mode of inheritance for gene: MPEG1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: MPEG1 were set to 33224153; 33692780; 28422754 Phenotypes for gene: MPEG1 were set to Immunodeficiency 77, MIM# 619223 Review for gene: MPEG1 was set to GREEN Added comment: Immunodeficiency-77 (IMD77) is an immunologic disorder characterized by recurrent and persistent polymicrobial infections with multiple unusual organisms. Skin and pulmonary infections are the most common, consistent with increased susceptibility to epithelial cell infections. The age at onset is highly variable: some patients have recurrent infections from childhood, whereas others present in late adulthood. The limited number of reported patients are all female, suggesting incomplete penetrance or a possible sex-influenced trait. Patient cells, mainly macrophages, show impaired killing of intracellular bacteria and organisms, including nontubercular mycobacteria, although there is also impaired killing of other organisms, such as Pseudomonas, Candida, and Aspergillus. Four individuals reported, functional data, including animal model. Sources: Expert list |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.6768 | FAM57B |
Zornitza Stark gene: FAM57B was added gene: FAM57B was added to Mendeliome. Sources: Literature Mode of inheritance for gene: FAM57B was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: FAM57B were set to 33077892 Phenotypes for gene: FAM57B were set to Cone–rod dystrophy; Maculopathy Review for gene: FAM57B was set to GREEN Added comment: 4 patients with cone-rod dystrophy or maculopathy from 3 families, with LOF pathogenic variants in TLCD3B (ceramide synthase gene). Ceramide is a proapoptotic lipid as high levels of ceramides can lead to apoptosis of neuronal cells, including photoreceptors. Variants segregated with disease. TLCD3B showed high expression in the adult retina with higher expression in the macular than in the peripheral region. Tlcd3bKO/KO mice exhibited a significant reduction of the cone photoreceptor light responses, thinning of the outer nuclear layer, and loss of cone photoreceptors across the retina. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.6765 | TAOK2 | Bryony Thompson edited their review of gene: TAOK2: Changed phenotypes: Generalized verrucosis, abnormal T cell activation, autism | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.6765 | TAOK2 | Bryony Thompson Phenotypes for gene: TAOK2 were changed from Generalized verrucosis; abnormal T cell activation to Generalized verrucosis; abnormal T cell activation; autism | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.6763 | TAOK2 |
Bryony Thompson gene: TAOK2 was added gene: TAOK2 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: TAOK2 was set to BOTH monoallelic and biallelic, autosomal or pseudoautosomal Publications for gene: TAOK2 were set to 28385331; 29467497 Phenotypes for gene: TAOK2 were set to Generalized verrucosis; abnormal T cell activation Review for gene: TAOK2 was set to AMBER Added comment: PMID: 28385331 - A single consanguineous family with generalized verrucosis and abnormal T cell activation, and a homozygous missense (p.R700C), with some assays on patient fibroblasts. PMID: 29467497 - One of the several genes in the 16p11.2 microdeletion region associated with autism. Taok2 heterozygous and knockout mice had gene dosage-dependent impairments in cognition, anxiety, social interaction, brain size, and neural connectivity. 3 de novo variants and 3 predicted loss of function variants identified in 6 unrelated autism cases. 2 of the de novo variants have supporting functional assays, but 1 of them co-occurs in an individual with a CHD8 frameshift. 1 of the predicted loss of function variants was also identified in the unaffected father and sibling. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.6582 | SYCP2L |
Arina Puzriakova gene: SYCP2L was added gene: SYCP2L was added to Mendeliome. Sources: Literature Mode of inheritance for gene: SYCP2L was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: SYCP2L were set to 32303603 Phenotypes for gene: SYCP2L were set to Premature ovarian insufficiency Review for gene: SYCP2L was set to AMBER Added comment: - PMID: 32303603 (2021) - Two unrelated individuals with premature ovarian insufficiency and homozygous variants (c.150_151del (p.Ser52Profs*7), c.999A>G (p.Ile333Met)) in SYCP2L. In vitro assays revealed that mutant SYCP2L proteins induced mislocalisation and reduced expression. Sycp2l knockout mice exhibit accelerated reproductive ageing. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.6494 | SPTAN1 | Melanie Marty changed review comment from: 13 affected individuals from 4 families reported (nonsense variants) with AD distal hereditary motor neuropathy. Variable penetrance was noted and phenotype severity differs greatly between patients; to: 13 affected individuals from 4 families reported (nonsense variants) with AD distal hereditary motor neuropathy. Variable penetrance was noted and phenotype severity differs greatly between patients. Functional studies show NMD and reduced protein levels in patient cells. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.6465 | ANGPT1 |
Bryony Thompson gene: ANGPT1 was added gene: ANGPT1 was added to Mendeliome. Sources: Other Mode of inheritance for gene: ANGPT1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: ANGPT1 were set to 28601681; 24852101; 30689269; 10617467; 8980224 Phenotypes for gene: ANGPT1 were set to Hereditary angioedema Review for gene: ANGPT1 was set to AMBER Added comment: A missense variant (A119S) identified in 4 affected individuals in a single family. Supportive data in patient cells, functional assays of the variant, and animal models (both overexpression and null) for the gene. Sources: Other |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.6463 | CLTCL1 |
Bryony Thompson changed review comment from: PMID: 26068709 - Three siblings in a single consanguineous family with congenital insensitivity to pain, inability to feel touch, and cognitive delay and a homozygous rare missense variant (Glu330Lys - no homozygotes in gnomAD v2.1). In vitro functional assays of the variant suggested a deleterious effect on the protein. Additionally cellular assays suggested a role for the gene in neural crest development and in the genesis of pain and touch sensing neurons. PMID: 29402896 - more in depth functional assays and proteomic analyses suggesting a role for the protein in regulating sensory neuron differentiation in the human peripheral system Other reports of associations with limited evidence: PMID: 22511880 - Identified as a candidate gene in an autism study, but the homozygous variant (reported as R125C, but actually R1165C) has 40 homozygotes in gnomAD v2.1. And many of the other compound heterozygous candidate variants in the study are too common in gnomAD v2.1, with many homozygotes present. The missense reported in the pain insensitivity family Glu330Lys was reported with another rare missense variant (Glu1310Lys) in one of the autism cases, but no other phenotype information was provided. PMID: 31354784 - a single case with infantile spasm reported with compound het missense (Met1316Val & Arg1165Cys), but both are very common in gnomAD v2.1 with 33,000 and 40 homozygotes, respectively. Sources: Literature; to: PMID: 26068709 - Three siblings in a single consanguineous family with congenital insensitivity to pain, inability to feel touch, and cognitive delay and a homozygous rare missense variant (Glu330Lys - no homozygotes in gnomAD v2.1). In vitro functional assays of the variant suggested a deleterious effect on the protein. Additionally cellular assays suggested a role for the gene in neural crest development and in the genesis of pain and touch sensing neurons. PMID: 29402896 - more in depth functional assays and proteomic analyses suggesting a role for the protein in regulating sensory neuron differentiation in the human peripheral system. Other reports of associations with limited evidence: PMID: 22511880 - Identified as a candidate gene in an autism study, but the homozygous variant (reported as R125C, but actually R1165C) has 40 homozygotes in gnomAD v2.1. And many of the other compound heterozygous candidate variants in the study are too common in gnomAD v2.1, with many homozygotes present. The missense reported in the pain insensitivity family Glu330Lys was reported with another rare missense variant (Glu1310Lys) in one of the autism cases, but no other phenotype information was provided. PMID: 31354784 - a single case with infantile spasm reported with compound het missense (Met1316Val & Arg1165Cys), but both are very common in gnomAD v2.1 with 33,000 and 40 homozygotes, respectively. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.6463 | CLTCL1 |
Bryony Thompson gene: CLTCL1 was added gene: CLTCL1 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: CLTCL1 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: CLTCL1 were set to 26068709; 29402896; 22511880; 31354784 Phenotypes for gene: CLTCL1 were set to Congenital insensitivity to pain Review for gene: CLTCL1 was set to AMBER Added comment: PMID: 26068709 - Three siblings in a single consanguineous family with congenital insensitivity to pain, inability to feel touch, and cognitive delay and a homozygous rare missense variant (Glu330Lys - no homozygotes in gnomAD v2.1). In vitro functional assays of the variant suggested a deleterious effect on the protein. Additionally cellular assays suggested a role for the gene in neural crest development and in the genesis of pain and touch sensing neurons. PMID: 29402896 - more in depth functional assays and proteomic analyses suggesting a role for the protein in regulating sensory neuron differentiation in the human peripheral system Other reports of associations with limited evidence: PMID: 22511880 - Identified as a candidate gene in an autism study, but the homozygous variant (reported as R125C, but actually R1165C) has 40 homozygotes in gnomAD v2.1. And many of the other compound heterozygous candidate variants in the study are too common in gnomAD v2.1, with many homozygotes present. The missense reported in the pain insensitivity family Glu330Lys was reported with another rare missense variant (Glu1310Lys) in one of the autism cases, but no other phenotype information was provided. PMID: 31354784 - a single case with infantile spasm reported with compound het missense (Met1316Val & Arg1165Cys), but both are very common in gnomAD v2.1 with 33,000 and 40 homozygotes, respectively. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.6321 | FCHO1 | Zornitza Stark Phenotypes for gene: FCHO1 were changed from Combined immunodeficiency; T cells: low, poor proliferation; B cells: normal number; Recurrent infections (viral, mycobacteria, bacterial, fungal); lymphoproliferation; Failure to thrive; Increased activation-induced T-cell death; Defective clathrin-mediated endocytosis to Immunodeficiency 76, MIM# 619164; Combined immunodeficiency; T cells: low, poor proliferation; B cells: normal number; Recurrent infections (viral, mycobacteria, bacterial, fungal); lymphoproliferation; Failure to thrive; Increased activation-induced T-cell death; Defective clathrin-mediated endocytosis | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.6320 | FCHO1 | Zornitza Stark edited their review of gene: FCHO1: Changed phenotypes: Immunodeficiency 76, MIM# 619164, Combined immunodeficiency, T cells: low, poor proliferation, B cells: normal number, Recurrent infections (viral, mycobacteria, bacterial, fungal), lymphoproliferation, Failure to thrive, Increased activation-induced T-cell death, Defective clathrin-mediated endocytosis | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.6295 | PNLIP |
Bryony Thompson gene: PNLIP was added gene: PNLIP was added to Mendeliome. Sources: Literature Mode of inheritance for gene: PNLIP was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: PNLIP were set to 31977950; 25862608; 24262094; 27604308 Phenotypes for gene: PNLIP were set to Pancreatic lipase deficiency MIM#614338; disorders of lipid and lipoprotein metabolism Review for gene: PNLIP was set to GREEN Added comment: 4 cases from 2 unrelated families, with supporting biochemical assays in patient cells and cellular-based assays. The cases have decreased absorption of dietary fat and greasy voluminous stools, but apparent normal development and an overall good state of health. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.6187 | BRWD1 |
Paul De Fazio gene: BRWD1 was added gene: BRWD1 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: BRWD1 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: BRWD1 were set to 33389130 Phenotypes for gene: BRWD1 were set to Asthenoteratozoospermia, likely primary ciliary dyskinesia Review for gene: BRWD1 was set to GREEN gene: BRWD1 was marked as current diagnostic Added comment: Biallelic missense variants reported in 3 unrelated individuals. Apart from asthenoteratozoospermia, all 3 had PCD or "PCD-likely" symptoms of re-occurring airway infections, bronchiectasis, and rhinosinusitis. One individual had situs inversus. Studies on cells from one indivdidual showed abnormal respiratory cilia structure. BRWD1 staining was absent from respiratory cilia in this individual (present in controls). Rated Green as there are three unrelated individuals reported. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.6167 | ENO1 |
Kristin Rigbye gene: ENO1 was added gene: ENO1 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: ENO1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: ENO1 were set to 32488097 Phenotypes for gene: ENO1 were set to Polymicrogyria Review for gene: ENO1 was set to RED Added comment: ENO1 identified as a polymicrogyria candidate gene from the smallest case of 1p36 duplication reported to date, in a 35yo F (onset at 8mo) presenting intellectual disability, microcephaly, epilepsy and perisylvian polymicrogyria. The duplication only encompassed 2 genes, ENO1 and RERE, and gene expression analysis performed using the patient cells revealed reduced expression, mimicking haploinsufficiency. Eno1 inactivation in rats was shown to cause a brain development defect. According to OMIM, ENO1 is deleted in glioblastoma, which is tolerated by the expression of ENO2. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.6102 | CBY1 |
Bryony Thompson gene: CBY1 was added gene: CBY1 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: CBY1 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: CBY1 were set to 33131181; 25103236; 25220153 Phenotypes for gene: CBY1 were set to intellectual disability; cerebellar ataxia; molar tooth sign; polydactyly; Joubert syndrome Review for gene: CBY1 was set to GREEN Added comment: Three cases in two unrelated consanguineous families with homozygous loss of function variants. Multiple null model organisms recapitulate the human phenotype: Null mouse model had cystic kidneys, a phenotype common to ciliopathies. Reducing Cby levels in Xenopus laevis model reduced the density of multiciliated cells, the number of basal bodies per multiciliated cell, and the numbers of neural tube primary cilia; it also led to abnormal development of the neural crest, central nervous system, and pronephros. Depletion of cby1 in zebrafish results in ciliopathy‐related phenotypes. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.6019 | CELF2 | Zornitza Stark Marked gene: CELF2 as ready | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.6019 | CELF2 | Zornitza Stark Gene: celf2 has been classified as Green List (High Evidence). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.6019 | CELF2 | Zornitza Stark Classified gene: CELF2 as Green List (high evidence) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.6019 | CELF2 | Zornitza Stark Gene: celf2 has been classified as Green List (High Evidence). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.6018 | CELF2 |
Zornitza Stark gene: CELF2 was added gene: CELF2 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: CELF2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: CELF2 were set to 33131106 Phenotypes for gene: CELF2 were set to Developmental and epileptic encephalopathy Review for gene: CELF2 was set to GREEN Added comment: Five unrelated individuals reported. Four with de novo variants, and one inherited from a mosaic mother. Notably, all identified variants, except for c.272‐1G>C, were clustered within 20 amino acid residues of the C‐terminus, which might be a nuclear localization signal. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.5917 | RALGAPB |
Elena Savva gene: RALGAPB was added gene: RALGAPB was added to Mendeliome. Sources: Literature Mode of inheritance for gene: RALGAPB was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown Publications for gene: RALGAPB were set to PMID: 32853829 Phenotypes for gene: RALGAPB were set to Neurodevelopmental disorders, autism Review for gene: RALGAPB was set to GREEN Added comment: PMID: 32853829 - 2 patients with de novo missense variants, 1 patient with a de novo PTC with autism spectrum disorder from a large cohort. Reviews previous publications and identifies 10 de novo variants (5 PTCs, 5 missense) in patients with ASD (7/10), epilepsy (2/10) and developmental delay (1/10). Functional studies of patient cells show reduced mRNA expression (PTC). Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.5914 | LSM11 |
Ee Ming Wong gene: LSM11 was added gene: LSM11 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: LSM11 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: LSM11 were set to PMID: 33230297 Phenotypes for gene: LSM11 were set to type I interferonopathy Aicardi–Goutières syndrome Review for gene: LSM11 was set to AMBER gene: LSM11 was marked as current diagnostic Added comment: - Two affected siblings from a consanguineous family carrying a homozygous variant in LSM11 - Compared to control fibroblasts, patient fibroblasts were enriched for misprocessed forms of replication-dependent histone (RDH) mRNAs - Knockdown of LSM11 in THP-1 cells results in an increase in misprocessed RDH mRNA and interferon signaling Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.5611 | ECEL1P2 | Zornitza Stark Marked gene: ECEL1P2 as ready | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.5611 | ECEL1P2 | Zornitza Stark Gene: ecel1p2 has been classified as Red List (Low Evidence). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.5611 | ECEL1P2 | Zornitza Stark Classified gene: ECEL1P2 as Red List (low evidence) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.5611 | ECEL1P2 | Zornitza Stark Gene: ecel1p2 has been classified as Red List (Low Evidence). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.5610 | ECEL1P2 | Zornitza Stark reviewed gene: ECEL1P2: Rating: RED; Mode of pathogenicity: None; Publications: ; Phenotypes: ; Mode of inheritance: None | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.5553 | MINPP1 |
Zornitza Stark gene: MINPP1 was added gene: MINPP1 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: MINPP1 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: MINPP1 were set to 33257696 Phenotypes for gene: MINPP1 were set to Pontocerebellar hypoplasia Review for gene: MINPP1 was set to GREEN Added comment: 8 individuals from 6 unrelated families reported with bi-allelic LOF variants. All presented with almost complete absence of motor and cognitive development, progressive or congenital microcephaly, spastic tetraplegia or dystonia, and vision impairments. For most, the first symptoms included neonatal severe axial hypotonia and epilepsy that started during the first months or years of life. Prenatal symptoms of microcephaly associated with increased thalami echogenicity were detected in one, while the seven other individuals presented with progressive microcephaly. Some exhibited rapidly progressive phenotype and the affected children died in their infancy or middle-childhood. Strikingly, all the affected children had a unique brain MRI showing a mild to severe PCH, fluid-filled posterior fossa, with dilated lateral ventricles. In addition, severe atrophy at the level of the basal ganglia or thalami often associated with typical T2 hypersignal were identified in all the patients MRI. Supportive functional data showing accumulation of highly phosphorylated inositols, mostly inositol hexakisphosphate (IP6), detected in HEK293 cells, fibroblasts, iPSCs and differentiating neurons lacking MINPP1. In mutant cells, higher IP6 level is expected to be associated with an increased chelation of intracellular cations, such as iron or calcium, resulting in decreased levels of available ions. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.5549 | DNAJB11 | Zornitza Stark edited their review of gene: DNAJB11: Added comment: Single family reported with bi-allelic variant and severe, fetal onset renal cystic disease, dilation and proliferation of pancreatic duct cells, and liver ductal plate malformation, an association known as Ivemark II syndrome.; Changed publications: 29706351, 29777155, 33129895; Changed phenotypes: Polycystic kidney disease 6 with or without polycystic liver disease, MIM#618061, Ivermark II syndrome.; Changed mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.5507 | FKBP8 |
Eleanor Williams gene: FKBP8 was added gene: FKBP8 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: FKBP8 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown Publications for gene: FKBP8 were set to 32969478 Phenotypes for gene: FKBP8 were set to spina bifida HP:0002414 Review for gene: FKBP8 was set to AMBER Added comment: Not associated with a phenotype in OMIM. PMID: 32969478 - Tian et al 2020 - performed Sanger sequencing of FKBP8 on DNA samples from 472 spina bifida (SB) affected fetuses and 565 unaffected controls. 5 different rare heterozygous variants (MAF ≤ 0.001) were identified among the SB patients, while no deleterious rare variants were identified in the controls. 4 of the variants are missense, the other is a stop-gain. 2 cases were in white-Hispanic patients while the other 3 were non-white Hispanic. Functional studies showed that p.Glu140* affected FKBP8 localization to the mitochondria and impaired its interaction with BCL2 ultimately leading to an increase in cellular apoptosis. p.Ser3Leu, p.Lys315Asn and p.Ala292Ser variants decreased FKBP8 protein level. Gene expression was studied in mouse Fkbp8-/- embryos and found to be abnormal. Previous mouse models have shown neural tube defects. Sufficient cases to rate green, but only the FKBP8 gene looked at so perhaps some caution required while further evidence is gathered. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.5473 | TMEM218 |
Bryony Thompson gene: TMEM218 was added gene: TMEM218 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: TMEM218 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: TMEM218 were set to https://doi.org/10.1016/j.xhgg.2020.100016; 25161209 Phenotypes for gene: TMEM218 were set to Joubert syndrome; retinal dystrophy; polycystic kidneys; occipital encephalocele Review for gene: TMEM218 was set to GREEN Added comment: 11 cases in 6 families with homozygous or compound heterozygous missense and nonsense (1) variants, with a Joubert/Meckel syndrome phenotype. Clinical features included the molar tooth sign (N=2), occipital encephalocele (N=5, all fetuses), retinal dystrophy (N=4, all living individuals), polycystic kidneys (N=2), and polydactyly (N=2), without liver involvement. A null mouse model had nephronophthisis and retinal degeneration. No OMIM entry. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.5461 | LCP2 |
Zornitza Stark gene: LCP2 was added gene: LCP2 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: LCP2 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: LCP2 were set to 33231617 Phenotypes for gene: LCP2 were set to Severe combined immunodeficiency Review for gene: LCP2 was set to RED Added comment: Infant with bi-allelic variants in this gene and early-onset life-threatening infections, combined T and B cell immunodeficiency, severe neutrophil defects, and impaired platelet aggregation. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.5381 | LRIF1 |
Bryony Thompson changed review comment from: A single consanguineous case with a homozygous truncating variant. DZ4Z hypomethylation and increased DUX expression was present in patient cells. siRNA-mediated depletion of LRIF1L in immortalized myoblasts derepressed the DUX4 locus. Sources: Literature; to: A single consanguineous case with a homozygous truncating variant, and D4Z4 repeat of 13 units on a 4qA haplotype (permissive haplotype). DZ4Z hypomethylation and increased DUX expression was present in patient cells. siRNA-mediated depletion of LRIF1L in immortalized myoblasts derepressed the DUX4 locus. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.5380 | LRIF1 |
Bryony Thompson gene: LRIF1 was added gene: LRIF1 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: LRIF1 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: LRIF1 were set to 32467133 Phenotypes for gene: LRIF1 were set to Facioscapulohumeral muscular dystrophy Review for gene: LRIF1 was set to AMBER Added comment: A single consanguineous case with a homozygous truncating variant. DZ4Z hypomethylation and increased DUX expression was present in patient cells. siRNA-mediated depletion of LRIF1L in immortalized myoblasts derepressed the DUX4 locus. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.5317 | UBA1 | Zornitza Stark edited their review of gene: UBA1: Added comment: Association with VEXAS: 25 men reported with somatic mutations affecting methionine-41 (p.Met41) in UBA1, the major E1 enzyme that initiates ubiquitylation, and an often fatal, treatment-refractory inflammatory syndrome develops in late adulthood, with fevers, cytopaenias, characteristic vacuoles in myeloid and erythroid precursor cells, dysplastic bone marrow, neutrophilic cutaneous and pulmonary inflammation, chondritis, and vasculitis.; Changed publications: 18179898, 32181232, 31932168, 29034082, 27699224, 26028276, 23518311, 33108101; Changed phenotypes: Spinal muscular atrophy, X-linked 2, infantile, MIM# 301830, Autoinflammatory disease, adult onset: VEXAS (vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.5275 | ECEL1 | Zornitza Stark Marked gene: ECEL1 as ready | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.5275 | ECEL1 | Zornitza Stark Gene: ecel1 has been classified as Green List (High Evidence). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.5275 | ECEL1 | Zornitza Stark Phenotypes for gene: ECEL1 were changed from to Arthrogryposis, distal, type 5D, MIM# 615065 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.5274 | ECEL1 | Zornitza Stark Publications for gene: ECEL1 were set to | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.5273 | ECEL1 | Zornitza Stark Mode of inheritance for gene: ECEL1 was changed from Unknown to BIALLELIC, autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.5272 | ECEL1 | Zornitza Stark reviewed gene: ECEL1: Rating: GREEN; Mode of pathogenicity: None; Publications: 23261301, 23236030, 25099528, 24782201; Phenotypes: Arthrogryposis, distal, type 5D, MIM# 615065; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.5248 | NHLRC2 |
Paul De Fazio changed review comment from: 3 families with compound het variants in total, all share one missense variant (p.Asp148Ty) PMID 29423877: 3 patients from 2 Finnish families compound het for the same missense variant (122 hets 0 homs) and the same frameshift variant (12 hets 0 homs), main clinical features included progressive cerebropulmonary symptoms, malabsorption, progressive growth failure, recurrent infections, chronic haemolytic anaemia and transient liver dysfunction. Expression studies in patient-derived fibroblasts supported the frameshift variant leading to NMD. Zebrafish knockdown affected the integrity of cells in the midbrain region. PMID 32435055: patient with the same phenotype from a Ukrainian family chet for two missense variants, one shared with the Finnish families and one novel.; to: 3 families with compound het variants in total, all share one missense variant (p.Asp148Ty) PMID 29423877: 3 patients from 2 Finnish families compound het for the same missense variant (122 hets 0 homs) and the same frameshift variant (12 hets 0 homs), main clinical features included progressive cerebropulmonary symptoms, malabsorption, progressive growth failure, recurrent infections, chronic haemolytic anaemia and transient liver dysfunction. Expression studies in patient-derived fibroblasts supported the frameshift variant leading to NMD. Zebrafish knockdown affected the integrity of cells in the midbrain region. PMID 32435055: patient with the same phenotype from a Ukrainian family chet for two missense variants, one shared with the Finnish families and one novel. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.5248 | NHLRC2 |
Paul De Fazio changed review comment from: 3 families with compound het variants in total, all share one missense variant (p.Asp148Ty) PMID 29423877: 3 patients from 2 Finnish families compound het for the same missense variant (122 hets 0 homs) and the same frameshift variant (12 hets 0 homs), main clinical features included progressive cerebropulmonary symptoms, malabsorption, progressive growth failure, recurrent infections, chronic haemolytic anaemia and transient liver dysfunction. Zebrafish knockdown affected the integrity of cells in the midbrain region. PMID 32435055: patient with the same phenotype from a Ukrainian family chet for two missense variants, one shared with the Finnish families and one novel.; to: 3 families with compound het variants in total, all share one missense variant (p.Asp148Ty) PMID 29423877: 3 patients from 2 Finnish families compound het for the same missense variant (122 hets 0 homs) and the same frameshift variant (12 hets 0 homs), main clinical features included progressive cerebropulmonary symptoms, malabsorption, progressive growth failure, recurrent infections, chronic haemolytic anaemia and transient liver dysfunction. Expression studies in patient-derived fibroblasts supported the frameshift variant leading to NMD. Zebrafish knockdown affected the integrity of cells in the midbrain region. PMID 32435055: patient with the same phenotype from a Ukrainian family chet for two missense variants, one shared with the Finnish families and one novel. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.5229 | PRKAR1B |
Konstantinos Varvagiannis gene: PRKAR1B was added gene: PRKAR1B was added to Mendeliome. Sources: Literature Mode of inheritance for gene: PRKAR1B was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown Publications for gene: PRKAR1B were set to https://doi.org/10.1101/2020.09.10.20190314; 25414040 Phenotypes for gene: PRKAR1B were set to Global developmental delay; Intellectual disability; Autism; Attention deficit hyperactivity disorder; Aggressive behavior; Abnormality of movement; Upslanted palpebral fissure Penetrance for gene: PRKAR1B were set to unknown Review for gene: PRKAR1B was set to AMBER Added comment: Please consider inclusion of this gene with amber rating pending publication of the preprint and/or additional evidence. Marbach et al. (2020 - medRxiv : https://doi.org/10.1101/2020.09.10.20190314 - last author : C. Schaaf) report 6 unrelated individuals with heterozygous missense PRKAR1B variants. All presented formal ASD diagnosis (6/6), global developmental delay (6/6) and intellectual disability (all - formal evaluations were lacking though). Additional features included neurologic anomalies (movement disorders : dyspraxia, apraxia, clumsiness in all, with tremor/dystonia or involuntary movements as single occurrences). Three displayed high pain tolerance. Regression in speech was a feature in two. Additional behavior anomalies included ADHD (4-5/6) or aggression (3/6). There was no consistent pattern of malformations, physical anomalies or facial features (with the exception of uplsanted palpebral fissures reported in 4). 3 different missense variants were identified (NM_00116470:c.1003C>T - p.Arg335Trp, c.586G>A - p.Glu196Lys, c.500_501delAAinsTT - p.Gln167Leu) with Arg355Trp being a recurrent one within this cohort (4/6 subjects). A possible splicing effect may apply for the MNV. All variants are absent from gnomAD and the SNVs had CADD scores > 24. In all cases were parental samples were available (5/6), the variant had occurred as a de novo event. Protein kinase A (PKA) is a tetrameric holoenzyme formed by the association of 2 catalytic (C) subunits with a regulatory (R) subunit dimer. Activation of PKA is achieved through binding of 2 cAMP molecules to each R-subunit, and unleashing(/dissociation) of C-subunits to engage substrates. PRKACA/B genes encode the Cα- and Cβ-subunits while the 4 functionally non-redundant regulatory subunits are encoded by PRKAR1A/1B/2A/2B genes. As the authors comment, the RIβ subunit is primarily expressed in brain with higher expression in cortex and hypothalamus. The functional consequences of the variants at cellular level were not studied. Previous studies have demonstrated that downregulation of RIβ in murine hippocampal cultures, reduced phosphorylation of CREB, a transcription factor involved in long-term memory formation. The authors speculate that a similar effect on cAMP/PKA/CREB cascade may mediate the cognitive effects in humans. RIβ deficient mice also display diminished nociceptive pain, similar to the human phenotype. [Several refs provided]. The authors cite the study by Kaplanis et al (2020 - PMID: 33057194), where in a large sample of 31,058 trio exomes of children with developmental disorders, PRKAR1B was among the genes with significant enrichment for de novo missense variants. [The gene has a pLI score of 0.18 in gnomAD / o/e = 0.26 - so pLoF variants may not be deleterious]. Please note that a specific PRKAR1B variant (NM_002735.2:c.149T>G - p.Leu50Arg) has been previous reported to segregate with a late-onset neurodegenerative disorder characterized by dementia and/or parkinsonism within a large pedigree with 12 affected individuals [Wong et al 2014 - PMID: 25414040]. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.5222 | MPP5 |
Konstantinos Varvagiannis gene: MPP5 was added gene: MPP5 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: MPP5 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown Publications for gene: MPP5 were set to 33073849 Phenotypes for gene: MPP5 were set to Global developmental delay; Intellectual disability; Delayed speech and language development; Developmental regression; Behavioral abnormality Penetrance for gene: MPP5 were set to unknown Review for gene: MPP5 was set to GREEN Added comment: Sterling et al (2020 - PMID: 33073849) provide information on the phenotype of 3 individuals with de novo MPP5 variants. Common features included global developmental delay, intellectual disability (3/3 - severe in 2/3), speech delay/regression (the latter in at least 2) and behavioral abnormalities. Variable other features were reported, among others microcephaly (1/3), abnormal vision (1/3 : CVI, retinal dystrophy, nystagmus), brain MRI abnormalities (2/3), late-onset seizures (1/3). These subjects displayed variable and non-specific dysmorphic features. All were investigated by exome sequencing (previous investigations not mentioned). One subject was found to harbor a de novo mosaic (5/25 reads) stopgain variant, further confirmed by Sanger sequencing [NM_022474.4:c.1555C>T - p.(Arg519Ter). The specific variant is reported once in gnomAD (1/251338). Two de novo missense variants were identified in the remaining individuals [c.1289A>G - p.Glu430Gly / c.974A>C - p.His325Pro). All variants had in silico predictions in favor of a deleterious effect (CADD score >24). The authors comment that MPP5 encodes an apical complex protein with asymmetric localization to the apical side of polarized cells. It is expressed in brain, peripheral nervous system and other tissues. MPP5 is a member of the membrane-associated guanylate kinase family of proteins (MAGUK p55 subfamily), determining cell polarity at tight junctions. Previous animal models suggest that complete Mpp5(Pals1) KO in mice leads to near absence of cerebral cortical neurons. Htz KO display reduction in size of cerebral cortex and hippocampus. The gene is expressed in proliferating cell populations of cerebellum and important for establishment cerebellar architecture. Conditional KO of Mpp5(Pals1) in retinal progenitor cells mimics the retinal pathology observed in LCA. [Several refs. provided] The authors studied a heterozygous CNS-specific Mpp5 KO mouse model. These mice presented microcephaly, decreased cerebellar volume and cortical thickness, decreased ependymal cells and Mpp5 at the apical surface of cortical vertrical zone. The proportion of cortical cells undergoing apoptotic cell death was increased. Mice displayed behavioral abnormalities (hyperactivity) and visual deficits, with ERG traces further suggesting retinal blindness. Overall the mouse model was thought to recapitulate the behavioral abnormalities observed in affected subjects as well as individual rare features such as microcephaly and abnormal vision. Haploinsufficiency (rather than a dominant negative effect) is favored as the underlying disease mechanism. This is also in line with a dose dependent effect observed in mice. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.5182 | HBB | Zornitza Stark Phenotypes for gene: HBB were changed from to Delta-beta thalassemia 141749; Erythrocytosis 6 617980; Heinz body anemia 140700; Hereditary persistence of fetal hemoglobin 141749; Methemoglobinemia, beta type 617971; Sickle cell anemia 603903; Thalassemia-beta, dominant inclusion-body 603902; Thalassemia, beta 613985 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.5174 | HBB | Elena Savva reviewed gene: HBB: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 31788855, 20301599, 29700171; Phenotypes: {Malaria, resistance to} 611162, Delta-beta thalassemia 141749, Erythrocytosis 6 617980, Heinz body anemia 140700, Hereditary persistence of fetal hemoglobin 141749, Methemoglobinemia, beta type 617971, Sickle cell anemia 603903, Thalassemia-beta, dominant inclusion-body 603902, Thalassemia, beta 613985; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal; Current diagnostic: yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.5010 | RAB27A | Zornitza Stark Phenotypes for gene: RAB27A were changed from to Griscelli syndrome, type 2, MIM# 607624 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.5007 | RAB27A | Zornitza Stark reviewed gene: RAB27A: Rating: GREEN; Mode of pathogenicity: None; Publications: 10835631, 10704277, 19030707, 15163896, 12058346, 10859366; Phenotypes: Griscelli syndrome, type 2, MIM# 607624; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4998 | CSNK1G1 |
Zornitza Stark gene: CSNK1G1 was added gene: CSNK1G1 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: CSNK1G1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: CSNK1G1 were set to 33009664 Phenotypes for gene: CSNK1G1 were set to Global developmental delay; Intellectual disability; Autism; Seizures Review for gene: CSNK1G1 was set to GREEN Added comment: Borderline Green/Amber rating. Gold et al (2020 - PMID: 33009664) report 5 individuals with CSNK1G1 variants, including updated information on a previously reported subject (Martin et al 2014 - PMID: 24463883). Features included DD (5/5) with associated expressive language delay, ASD (in at least 3/5), seizures (2/5), dysmorphic facial features (4/5 arched eyebrows, 3/5 prominent central incisors, 2/5 epicanthus) and limb anomalies (2/5 - proximally placed thumb, 5th f. clinodactyly, asymmetric overgrowth - the other individual had tapering fingers). GI problems were observed in 4/5. Two individuals had macrocephaly and one had microcephaly. There was no formal developmental assessment although ID might be implied in at least 3 individuals (p1: 20y - single words/regression in walking following a seizure episode, p2: 8y - first words at 5y, assistance to feed, dress and bathe, ASD, p4: 13y - regression, assistance to feed and dress). CSNK1G1 encodes the gamma-1 isoform of casein kinase 1, a protein involved in growth and cell morphogenesis. The gene has ubiquitous expression, incl. brain. As commented, in brain it regulates phosphorylation of NMDA receptors, playing a role in synaptic transmission (4 articles cited). One individual had a 1.2 kb deletion spanning exon 3 of CSNK1G1 [chr15:64550952-64552120 - GRCh37]. Parental samples were unavailable for this individual. Four individuals were found to harbor de novo CSNK1G1 variants [NM_022048.3: c.688C>T - p.(Arg230Trp) dn | c.1255C>T - p.(Gln419*) dn | c.1214+5G>A dn with in silico predictions in favor of splice disruption | c.419C>T - p.(Thr140Met) dn]. Arg230Trp is however present once in gnomAD. The stopgain variant is located in the last exon and predicted to skip NMD. There were no variant studies performed. The Drosophila gish gene encodes a CK1γ homolog with preferential expression in the mushroom body. Heterozygous and homozygous mutants exhibit impairment in memory retention, more severe in homozygous flies. gish was also identified as a seizure modifier in a fly epilepsy model (heterozygous para mt flies). Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4791 | AP1S1 |
Ee Ming Wong changed review comment from: - Established green gene in Ichthyosis, Palmoplantar Keratoderma and Erythrokeratoderma, ID and Hereditary Neuropathy (complex) panels associated with MEDNIK syndrome - PMID: 32306098 propose a clinical and genetic expansion for AP1S1-associated disease - 2 consanguineous families, each carrying a homozygous missense AP1S1 variant - AP1S1 knockout cell line demonstrated tight-junction and polarity abnormalities that were rescued by WT AP1S1, but not the AP1S1 missense mutants; to: - Established green gene in Ichthyosis, Palmoplantar Keratoderma and Erythrokeratoderma, ID and Hereditary Neuropathy (complex) panels associated with MEDNIK syndrome - PMID: 32306098 propose a clinical and genetic expansion for AP1S1-associated disease - 2 consanguineous families, each carrying a homozygous missense AP1S1 variant - AP1S1 knockout cell line demonstrated tight-junction and polarity abnormalities that were rescued by WT AP1S1, but not the AP1S1 missense mutants |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4791 | AP1S1 |
Ee Ming Wong changed review comment from: - 2 consanguineous families, each carrying a homozygous missense AP1S1 variant - AP1S1 knockout cell line demonstrated tight-junction and polarity abnormalities that were rescued by WT AP1S1, but not the AP1S1 missense mutants; to: - Established green gene in Ichthyosis, Palmoplantar Keratoderma and Erythrokeratoderma, ID and Hereditary Neuropathy (complex) panels associated with MEDNIK syndrome - PMID: 32306098 propose a clinical and genetic expansion for AP1S1-associated disease - 2 consanguineous families, each carrying a homozygous missense AP1S1 variant - AP1S1 knockout cell line demonstrated tight-junction and polarity abnormalities that were rescued by WT AP1S1, but not the AP1S1 missense mutants |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4789 | THOC1 |
Melanie Marty changed review comment from: Missense variant identified and segregated with adult-onset hearing loss in 9 affected family members. 12 unaffected individuals also tested. Functional studies showed THOC1 was expressed in mouse and zebrafish hair cells. Furthermore, thoc1 deficiency caused the reduction of hair cell numbers in zebrafish and in mouse it induced hair cell apoptosis. Sources: Literature; to: Missense variant identified and segregated with adult-onset hearing loss in 9 affected family members. 12 unaffected individuals also tested. Functional studies showed THOC1 was expressed in mouse and zebrafish hair cells. Furthermore, thoc1 deficiency caused the reduction of hair cell numbers in zebrafish and the hypomorphic thoc1 in mouse induced hair cell apoptosis. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4786 | THOC1 |
Melanie Marty changed review comment from: Missense variant identified and segregated with adult-onset hearing loss in 9 affected family members. 12 unaffected individuals also tested. Functional studies showed THOC1 was expressed in mouse and zebrafish hair cells. Furthermore, thoc1 deficiency caused the reduction of hair cell numbers in zebrafish and the induced hair cell apoptosis. Sources: Literature; to: Missense variant identified and segregated with adult-onset hearing loss in 9 affected family members. 12 unaffected individuals also tested. Functional studies showed THOC1 was expressed in mouse and zebrafish hair cells. Furthermore, thoc1 deficiency caused the reduction of hair cell numbers in zebrafish and in mouse it induced hair cell apoptosis. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4783 | THOC1 |
Melanie Marty changed review comment from: Missense variant identified and segregated with adulthood-onset hearing loss in 9 affected family members. 12 unaffected individuals also tested. Functional studies showed THOC1 was expressed in mouse and zebrafish hair cells. Furthermore, thoc1 deficiency caused the reduction of hair cell numbers in zebrafish and the induced hair cell apoptosis. Sources: Literature; to: Missense variant identified and segregated with adult-onset hearing loss in 9 affected family members. 12 unaffected individuals also tested. Functional studies showed THOC1 was expressed in mouse and zebrafish hair cells. Furthermore, thoc1 deficiency caused the reduction of hair cell numbers in zebrafish and the induced hair cell apoptosis. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4783 | PRICKLE3 |
Teresa Zhao gene: PRICKLE3 was added gene: PRICKLE3 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: PRICKLE3 was set to X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) Publications for gene: PRICKLE3 were set to 32516135 Phenotypes for gene: PRICKLE3 were set to Leber’s hereditary optic neuropathy MIM#535000 Review for gene: PRICKLE3 was set to AMBER Added comment: Reported as X-linked LHON modifier (c.157C>T, p.Arg53Trp) in PRICKLE3 in 3 Chinese families. All affected individuals carried both ND4 11778G>A and p.Arg53Trp mutations, while subjects bearing only a single mutation exhibited normal vision. Defective assembly, stability, and function of ATP synthase observed using Lymphoblastoid cell lines from one of the families. This finding indicated that the p.Arg53Trp mutation acted in synergy with the m.11778G>A mutation and deteriorated mitochondrial dysfunctions necessary for the expression of LHON. Prickle3-deficient mice exhibited pronounced ATPase deficiencies. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4782 | THOC1 |
Melanie Marty gene: THOC1 was added gene: THOC1 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: THOC1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: THOC1 were set to 32776944 Phenotypes for gene: THOC1 were set to Nonsyndromic hearing loss Review for gene: THOC1 was set to AMBER Added comment: Missense variant identified and segregated with adulthood-onset hearing loss in 9 affected family members. 12 unaffected individuals also tested. Functional studies showed THOC1 was expressed in mouse and zebrafish hair cells. Furthermore, thoc1 deficiency caused the reduction of hair cell numbers in zebrafish and the induced hair cell apoptosis. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4685 | RPL9 | Arina Puzriakova changed review comment from: PMID: 31799629 (2020) - One individual diagnosed with Diamond Blackfan anaemia carrying a de novo variant (c.-2+1G>C) in the 5′UTR of RPL9, predicted to affect the donor splice site of exon 1. Functional studies showed the variant impairs processing of pre-rRNA during ribosome biogenesis, stabilises TP53 and impairs the proliferation and differentiation of erythroid cells. Zebrafish models of RPL9 LoF recapitulate the anaemia phenotype.; to: PMID: 31799629 (2020) - Female infant diagnosed with Diamond-Blackfan anaemia carrying a de novo variant (c.-2+1G>C) in the 5′UTR of RPL9, predicted to affect the donor splice site of exon 1. Phenotypic overlap can be seen with the previously reported case with the same variant, including colitis, thumb anomaly, and microcephaly. Functional studies showed the variant impairs processing of pre-rRNA during ribosome biogenesis, stabilises TP53 and impairs the proliferation and differentiation of erythroid cells. Zebrafish models of RPL9 LoF recapitulate the anaemia phenotype. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4568 | RPS20 |
Bryony Thompson gene: RPS20 was added gene: RPS20 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: RPS20 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: RPS20 were set to 32790018 Phenotypes for gene: RPS20 were set to Diamond Blackfan anaemia Mode of pathogenicity for gene: RPS20 was set to Other Review for gene: RPS20 was set to AMBER Added comment: Two unrelated cases where a de novo variant involving Ile84 (Ile84Ser and Ile84Asn), and reduce the RPS20 protein level in patient cells. Yeast models with mutation of the cognate residue resulted in defects in growth, ribosome biogenesis, and polysome formation. Loss of function may not be the mechanism of disease, because loss of function variants appear to be exclusively associated with familial colorectal cancer without the DBA phenotype. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4520 | SLC12A2 |
Zornitza Stark edited their review of gene: SLC12A2: Added comment: Monoallelic : DD/ID was a feature in >= 6 individuals with monoallelic de novo SLC12A2. An individual with an exon 22 truncating variant was reported to have normal milestones and cognitive function. Exon 21 variants have been described in individuals with rather isolated hearing impairment (possibly some associated motor delay, but normal cognition). Hearing impairment was also reported in 2/6 patients with variants in other exons (1 missense / 1 frameshift). Biallelic : DD/ID was reported in at least 3 individuals in literature. Hearing impairment has been reported on 2 occasions (although this was not probably evaluated in all subjects). --- Monoallelic SLC12A2 mutations : ► Individuals with de novo mutations and developmental disorder were first identified by the DDD study (2017 - PMID: 28135719). 5 of them have been reported in detail by McNeill et al (below). ► McNeill et al (2020 - PMID: 32658972) report on 6 individuals with neurodevelopmental disorder due to de novo SLC12A2 mutation. All presented DD or ID ranging from mild to severe. ASD was reported in 3/6. Sensorineural hearing loss was a feature in 2/6 with the remaining having normal formal evaluations. Brain, cardiac and/or additional malformations were reported in a single individual. Following non-diagnostic prior work-up (CMA, FMR1 or other investigations) trio exome sequencing revealed missense (4/6) or truncating variants (2/6). Three additional individuals (incl. a father and his son) with missense variants in exon 21 (NM_001046.3 / p.Glu979Lys and p.Glu980Lys) presented with bilateral sensorineural hearing loss. Speech and/or motor delay reported in these cases were attributed to the hearing impairment/vestibular arreflexia (cognitive abilities not tested). SLC12A2 encodes sodium-potassium-chloride transporter 1 (also NKCC1). The GTEx project has identified 8 isoforms. In brain both exon 21-containing/deleted isoforms are expressed (cited Morita et al 2014 - PMID: 24695712). As the authors discuss, RNA-seq of the developing mouse cochlea suggests that the exon 21 containing isoform is the single transcript expressed. Evidence from RNA-seq data (BrainSpan project) and literature suggests that the significant amounts of exon 21 lacking isoforms in fetal brain compensate for the deleterious effects of exon 21 variants and explain the lack of NDD in relevant patients. Slc12a2 (NKCC1) null mouse model has demonstrated that the transporter plays a role in accumulation of the potassium rich endolymph in the inner ear, with NKCC1 absence causing sensorineural deafness and imbalance. Slc12a2 display cochlear malformations, loss of hair cells and hearing impairment (cited Delpire et al 1999 - PMID: 10369265). The brain phenotype has not been studied extensively, although loss of Slc12a2 has been shown to inhibit neurogenesis (cited: Magalhães and Rivera et al. - PMID: 27582690). Slc12a2 null zebrafish display a collapse of the otic vesicle and reduced endolymph (Abbas and Whitfield, 2009 - PMID: 19633174) relevant to the human hearing disorder. In vitro assessment of NKCC1 ion transporter function in Xenopus laevis, supported the deleterious effect of the identified variants (significant reduction in K+ influx). Using available single cell RNA-seq data the authors further demonstrated that SLC12A2 expressing cells display transcriptomic profiles reflective of active neurogenesis. ► Delpire et al (2016 - PMID: 27900370 - not reviewed in detail) described a 13 y.o. girl harboring a de novo 11-bp deletion in SLC12A2 exon 22. This individual reached developmental milestones on time and had a NORMAL cognitive function. Hearing was seemingly normal. Features included orthostatic intolerance, respiratory weakness, multiple endocrine abnormalities, pancreatic insufficiency and multiorgan failure incl. gut and bladder. Exome in the proband, parents and 3 unaffected sibs suggested SLC12A2 as the only candidate for her phenotype. Functional analyses in Xenopus laevis oocytes suggested that a non functional transporter was expressed and trafficked to the membrane as the wt. Detection of the truncated protein at higher molecular sizes suggested either enhanced dimerization or misfolded aggregate. There was no dominant-negative effect of mutant NKCC1. In patient fibroblasts a reduced total and NKCC1-mediated K+ influx. ► Mutai et al (2020 - PMID: 32294086) report on several individuals from 4 families, harboring variants within exon 21 or - in one case - at it's 3' splice-site (leading to skipping oe this exon at the mRNA level). All subjects were investigated for severe/profound hearing loss (in line with the role of exon 21-included isoforms in cochlea. The variant segregated with hearing impairment in 3 generations of a family while in all other subjects the variant had occured as de novo event. Despite motor delays (e.g. the subject from fam2 could not hold head or sit at the age of 10m / the proband in Fam3 was able to hold his head and walk at 6 and 20 m respectively) behavior and cognition were commented to be within normal range. ----- Biallelic SLC12A2 mutations: ► Anazi et al (2017 - PMID: 29288388) briefly reported on a 3 y.o. boy (17DG0776) with central hypotonia, neonatal respiratory distress, failure to thrive, global DD and microcephaly and a skeletal survey suggestive of osteopenia. After non-diagnostic prior investigations (CMA revealing a 1p duplication classified as VUS, extensive metabolic workup), WES revealed a homozygous SLC12A2 splicing variant [NM_001046.2:c.2617-2A>G]. ► Macnamara et al (2019 - PMID: 30740830) described a 5.5 y.o. male with sensorineural hearing loss, profound delays in all developmental areas among several other features (choanal atresia, failure to thrive, respiratory problems, absent sweat and tear production or salivation, GI abnormalities). Genetic testing for several disorders considered (cystic fibrosis, spinal muscular atrophy, sequencing and del/dup analysis of mtDNA) was normal. CMA revealed paternal uniparental isodisomy for chr. 5 and WGS a homozygous 22kb deletion in SLC12A2. This was followed by confirmation of homozygosity in the proband, heterozygosity of the unaffected father, delineation of breakpoints (chr5:127441491-127471419). mRNA studies in patient fibroblasts confirmed deletion of ex2-7, splicing of ex1 directly to ex8 and introduction of a premature stop codon in ex9. qRT-PCR confirmed that mRNA is likely subjected to NMD (expression ~80% of control). Western blot confirmed absence of the protein in the patient's fibroblasts. Again mouse models are thought to recapitulate the hearing defect but also the deficient saliva production (cited Evans et al 2000 - PMID: 10831596). Again the authors speculate a role of SLC12A2 in brain development based on evidence from murine models (migration, dendritic growth, increse in neuron density through regulation of GABAergic signalling (Young et al 2012 - PMID: 23015452). Hypotheses are also made on a regulatory relationship between NKCC1 and CFTR based on mRNA data from the ko mouse model. ► Stödberg et al (2020 - PMID: 32754646) reported 2 sibs with a complex neurodevelopmental disorder due to compound heterozygosity for a frameshift SLC12A2 variant and a splicing one (NM_001046:c.1431delT and c.2006-1G>A). Both presented hypotonia, neonatal S. aureus parotitis and respiratory problems (incl. apneas). While the older sib died at the age of 22 days, the younger one had persistent respiratory issues incl. a dry respiratory mucosa motivating metabolic, immunology investigations and testing for CF. She displayed microcephaly (OFC -2.5 SD, H was also -3.5SD), severe intellectual disability. MRI was suggestive of white matter and basal ganglia abnormalities. Other features incl. hearing impairment, and lack of tears,saliva and sweat, constipation and intestinal malrotation. There was facial dysmorphism. The variants were the only retained following WGS of the 2 affected sisters, parents and an unaffected brother. The splicing variant was shown to result in skipping of exon 13, while the indel in NMD. Again the authors discuss that the deficient saliva production, impaired hearing and GI problems are recapitulated in the mouse model (several refs provided).; Changed rating: GREEN; Changed publications: 28135719, 32658972, 27900370, 32294086, 29288388, 30740830, 32754646; Changed phenotypes: Kilquist syndrome, deafness, intellectual disability, dysmorphic features, absent salivation, ectodermal dysplasia, constipation, intestinal malrotation, multiple congenital anomalies; Changed mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4501 | MTX2 |
Zornitza Stark gene: MTX2 was added gene: MTX2 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: MTX2 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: MTX2 were set to 32917887 Phenotypes for gene: MTX2 were set to Mandibuloacral dysplasia; lipodystrophy; arterial calcification Review for gene: MTX2 was set to GREEN Added comment: Seven individuals from 5 unrelated families reported with severe progeroid form of MAD with growth retardation, small viscerocranium with mandibular underdevelopment, distal acro-osteolyses, lipodystrophy, altered skin pigmentation, renal focal glomerulosclerosis, and extremely severe hypertension in most cases, eventually associated with disseminated arterial calcification. Loss of MTX2 in patients' primary fibroblasts led to loss of Metaxin-1 (MTX1) and mitochondrial dysfunction, including network fragmentation and oxidative phosphorylation impairment. Furthermore, patients' fibroblasts were resistant to induced apoptosis, leading to increased cell senescence and mitophagy and reduced proliferation. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4500 | RREB1 |
Zornitza Stark gene: RREB1 was added gene: RREB1 was added to Mendeliome. Sources: Literature SV/CNV tags were added to gene: RREB1. Mode of inheritance for gene: RREB1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: RREB1 were set to 32938917 Phenotypes for gene: RREB1 were set to Noonan syndrome-like disorder Review for gene: RREB1 was set to RED Added comment: Single individual reported with Noonan syndrome-like features and a deletion encompassing RREB1. Overlapping deletions in publicly reported databases examined, and RREB1 postulated to be the key gene. Rreb1 hemizygous mice display orbital hypertelorism and age dependent cardiac hypertrophy. RREB1 recruits SIN3A and KDM1A to an RRE in target promoters in human and murine cells to control histone H3K4 methylation of MAPK pathway genes. In summary, single well phenotyped individual with a CNV and experimental data to support gene-disease association. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4496 | FNIP1 |
Arina Puzriakova gene: FNIP1 was added gene: FNIP1 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: FNIP1 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: FNIP1 were set to 32181500; 32905580 Phenotypes for gene: FNIP1 were set to Hypertrophic Cardiomyopathy; Primary Immunodeficiency; Agammaglobulinemia; Neutropenia Review for gene: FNIP1 was set to GREEN Added comment: - PMID: 32181500 (2020) - Three patients from two independent consanguineous families with homozygous variants (c.3353G>A, p.Ser1118Asn and c.1289delA, p.His430Profs7*) in the FNIP1 gene. Both variants segregated with the disease phenotype in each family. Clinically, patients presented with combined immunodeficiency, cardiac findings (hypertrophic cardiomyopathy, Wolff‐Parkinson‐White syndrome), and myopathy of skeletal muscles with motor DD. Authors note phenotypic overlap with the murine model of FNIP1 deficiency, but no functional analyses of the variants or patient cells were performed. - PMID: 32905580 (2020) - Three cases from unrelated families, all harbouring novel biallelic variants in FNIP1. Clinical manifestations in all patients include hypertrophic cardiomyopathy, severe and/or recurrent infections, absent circulating B-cells, and agammaglobulinemia; as well as either severe or intermittent neutropenia in two cases. Functional studies showed impairment of B-cell metabolism, including disruptions to mitochondrial numbers/activity and the PI3K/AKT pathway. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4480 | MAPK8 |
Arina Puzriakova gene: MAPK8 was added gene: MAPK8 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: MAPK8 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown Publications for gene: MAPK8 were set to 31784499 Phenotypes for gene: MAPK8 were set to Chronic mucocutaneous candidiasis; Connective tissue disorders Added comment: PMID: 31784499 (2020) - Three cases in a single family with chronic mucocutaneous candidiasis and a connective tissue disorder that clinically overlaps with hEDS. WES revealed a splice-site variant (c.311+1G>A) in the MAPK8 gene that segregated with the disorder. Includes supportive functional data using patient-derived fibroblasts, showing that the variant impairs IL-17A/F immunity and the development of Th17 cells. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4480 | CTNNBL1 |
Arina Puzriakova gene: CTNNBL1 was added gene: CTNNBL1 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: CTNNBL1 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: CTNNBL1 were set to 32484799 Phenotypes for gene: CTNNBL1 were set to Primary Immunodeficiency; Autoimmune Cytopenias; Common variable immunodeficiency Added comment: PMID: 32484799 (2020) - One patient with common variable immunodeficiency associated with autoimmune cytopenia (CVID+AIC), associated with a homozygous missense M466V variant in the CTNNBL1 gene. Functional studies showed that the variant impaired interaction with AID, in turn disrupting AID-mediated antibody diversification in activated B-cells. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4398 | SVBP |
Zornitza Stark changed review comment from: 5 unrelated families with homozygous mutations in SVBP. The mutations segregated with the disorder in all families. In vitro functional cellular expression studies showed that protein levels of the SVBP mutants were barely detectable, suggesting instability, and that the mutant proteins had lost VASH/SVBP catalytic detyrosination activity toward tubulin. Knockdown of about 50% Svbp expression using shRNA in rat hippocampal neurons impaired the formation of excitatory synapses compared to controls. Sources: Literature; to: 5 unrelated families with homozygous mutations in SVBP. Some shared the same founder variant, p.Q28*. The mutations segregated with the disorder in all families. In vitro functional cellular expression studies showed that protein levels of the SVBP mutants were barely detectable, suggesting instability, and that the mutant proteins had lost VASH/SVBP catalytic detyrosination activity toward tubulin. Knockdown of about 50% Svbp expression using shRNA in rat hippocampal neurons impaired the formation of excitatory synapses compared to controls. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4309 | ZSWIM6 |
Zornitza Stark changed review comment from: MIM #617865 (NEDMAGA): A recurrent de novo heterozygous truncating mutation in the ZSWIM6 gene (R913X)identified in 7 unrelated patients. Analysis of patient cells indicated that the mutant transcript escaped nonsense-mediated mRNA decay, and most likely produced a truncated protein, although antibody studies were unable to detect a truncated protein. Possible dominant-negative effect. NB a more proximal nonsense variant was also reported inherited in a family with an unaffected mother: loss of function variants may not cause a phenotype. MIM#603671 (acromelic frontonasal dysplasia): recurrent missense identified in 6 unrelated families, p.Arg1163Trp; to: MIM #617865 (NEDMAGA): A recurrent de novo heterozygous truncating mutation in the ZSWIM6 gene (R913X) identified in 7 unrelated patients. Analysis of patient cells indicated that the mutant transcript escaped nonsense-mediated mRNA decay, and most likely produced a truncated protein, although antibody studies were unable to detect a truncated protein. Possible dominant-negative effect. NB a more proximal nonsense variant was also reported inherited in a family with an unaffected mother: loss of function variants may not cause a phenotype. MIM#603671 (acromelic frontonasal dysplasia): recurrent missense identified in 6 unrelated families, p.Arg1163Trp |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4309 | ZSWIM6 |
Zornitza Stark changed review comment from: MIM #617865 A recurrent de novo heterozygous truncating mutation in the ZSWIM6 gene (R913X)identified in 7 unrelated patients. Analysis of patient cells indicated that the mutant transcript escaped nonsense-mediated mRNA decay, and most likely produced a truncated protein, although antibody studies were unable to detect a truncated protein. Possible dominant-negative effect. NB a more proximal nonsense variant was also reported inherited in a family with an unaffected mother: loss of function variants may not cause a phenotype. MIM#603671: recurrent missense identified in 6 unrelated families, p.Arg1163Trp; to: MIM #617865 (NEDMAGA): A recurrent de novo heterozygous truncating mutation in the ZSWIM6 gene (R913X)identified in 7 unrelated patients. Analysis of patient cells indicated that the mutant transcript escaped nonsense-mediated mRNA decay, and most likely produced a truncated protein, although antibody studies were unable to detect a truncated protein. Possible dominant-negative effect. NB a more proximal nonsense variant was also reported inherited in a family with an unaffected mother: loss of function variants may not cause a phenotype. MIM#603671 (acromelic frontonasal dysplasia): recurrent missense identified in 6 unrelated families, p.Arg1163Trp |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4275 | EXOSC5 |
Arina Puzriakova changed review comment from: - PMID: 32504085 (2020) - Five patients from four families with biallelic variants in EXCOSC5. Clinical features included short stature (3/5), developmental delays that affect motor skills (3/5), hypotonia (4/5), ataxia (3/4), cerebellar hypoplasia/atrophy (4/5). Cognitive function was generally preserved, but included mild speech delays in one patient. Cerebellar ataxia was described in two sibs and one singleton - all of whom were compound heterozygous for the p.Thr114Ile variant, inherited in trans with a frameshift variant (p.His30Thrfs*35) or deletion involving exons 5–6 of EXOSC5, respectively. A LoF zebrafish model resulted in a variety of morphological defects including shortened and curved tails/bodies, reduced eye/head size and oedema. Functional studies of the variants in budding yeast and cultured cells showed some defects in RNA exosome function and interactions, that could not be explained by decrease in the steady-state level of EXOSC5. - PMID: 29302074 (2019) - Three sibs with a homozygous EXCOSC5 variant (p.Thr114Ile), associated with mild motor delays, cerebellar ataxia, nystagmus, dysarthria, and moderate ID. The family is also described in PMID: 30950035. No functional studies of the variant were undertaken.; to: - PMID: 32504085 (2020) - Five patients from four families with biallelic variants in EXOSC5. Clinical features included short stature (3/5), developmental delays that affect motor skills (3/5), hypotonia (4/5), ataxia (3/4), cerebellar hypoplasia/atrophy (4/5). Cognitive function was generally preserved, but included mild speech delays in one patient. Cerebellar ataxia was described in two sibs and one singleton - all of whom were compound heterozygous for the p.Thr114Ile variant, inherited in trans with a frameshift variant (p.His30Thrfs*35) or deletion involving exons 5–6 of EXOSC5, respectively. A LoF zebrafish model resulted in a variety of morphological defects including shortened and curved tails/bodies, reduced eye/head size and oedema. Functional studies of the variants in budding yeast and cultured cells showed some defects in RNA exosome function and interactions, that could not be explained by decrease in the steady-state level of EXOSC5. - PMID: 29302074 (2019) - Three sibs with a homozygous EXOSC5 variant (p.Thr114Ile), associated with mild motor delays, cerebellar ataxia, nystagmus, dysarthria, and moderate ID. The family is also described in PMID: 30950035. No functional studies of the variant were undertaken. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4242 | MYSM1 |
Zornitza Stark changed review comment from: early-onset anaemia, leukopaenia, and decreased B cells, may have thrombocytopaenia or variable additional non-haematologic features, such as facial dysmorphism, skeletal anomalies, and mild developmental delay Sources: Expert list; to: Early-onset anaemia, leukopaenia, and decreased B cells, may have thrombocytopaenia or variable additional non-haematologic features, such as facial dysmorphism, skeletal anomalies, and mild developmental delay. At least 4 unrelated families reported. Sources: Expert list |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4230 | MCM10 |
Zornitza Stark gene: MCM10 was added gene: MCM10 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: MCM10 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: MCM10 were set to 32865517 Phenotypes for gene: MCM10 were set to Susceptibility to CMV Review for gene: MCM10 was set to RED Added comment: Compound heterozygous variants in minichromosomal maintenance complex member 10 (MCM10) reported as a cause of NK-cell deficiency in a child with fatal susceptibility to CMV. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4229 | TET2 | Zornitza Stark changed review comment from: PMID 32518946: 3 children with an immune dysregulation syndrome of susceptibility to infection, lymphadenopathy, hepatosplenomegaly, developmental delay, autoimmunity, and lymphoma of B-cell (n = 2) or T-cell (n = 1) origin, and bi-allelic variants in TET2.; to: Bi-allelic variants PMID 32518946: 3 children with an immune dysregulation syndrome of susceptibility to infection, lymphadenopathy, hepatosplenomegaly, developmental delay, autoimmunity, and lymphoma of B-cell (n = 2) or T-cell (n = 1) origin, and bi-allelic variants in TET2. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4229 | TET2 | Zornitza Stark edited their review of gene: TET2: Added comment: PMID 32518946: 3 children with an immune dysregulation syndrome of susceptibility to infection, lymphadenopathy, hepatosplenomegaly, developmental delay, autoimmunity, and lymphoma of B-cell (n = 2) or T-cell (n = 1) origin, and bi-allelic variants in TET2.; Changed rating: GREEN; Changed publications: 30890702, 31827242, 32330418, 32518946; Changed phenotypes: Dementia, Lymphoma/myeloid malignancy, Immunodeficiency; Changed mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4121 | UFC1 |
Paul De Fazio gene: UFC1 was added gene: UFC1 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: UFC1 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: UFC1 were set to 29868776; 30552426 Phenotypes for gene: UFC1 were set to Neurodevelopmental disorder with spasticity and poor growth (MIM#618076) Review for gene: UFC1 was set to GREEN gene: UFC1 was marked as current diagnostic Added comment: PMID 29868776: 8 affected individuals from 4 families reported. 7 were described to be postnatally microcephalic (at or below 3rd percentile). One was -5.1SD and one was -3.6SD. SD values for the others weren't provided. The following head circumference measurements were provided for 6 of the affecteds: 51cm at 16yo; 50cm at 19yo; 42.5cm at 12mo, 45cm at 28mo, 45.2cm at 7yo; 45cm at 4yo. 3 of the families were consanguineous Saudi families with the same homozygous missense variant. In vitro functional expression studies showed that both mutations caused impaired thioester binding with UFM1. Patient cells also showed decreased UFC1 intermediate formation with UFM1. The decrease in function was consistent with a hypomorphic allele, and the authors suggested that complete loss of function would be embryonic lethal. PMID 30552426: 1 more individual with epileptic encephalopathy reported with a different homozygous missense variant in UFC1. The patient had microcephaly <3rd percentile. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4091 | TRPM7 | Eleanor Williams commented on gene: TRPM7: PMID: 31423533 - Cartwright et al 2020 - functional studies on four heterozygous nonsynonymous variants that were observed in TRPM7 in four individual cases of unexplained still birth which were screened for variants in 35 candidate genes in PMID: 29874177 (Munroe et al 2018). TRPM7 is a ubiquitously expressed ion channel known to regulate cardiac development and repolarization in mice. They found two variants in TRPM7, p.G179V and p.T860M, reduce ion channel current expression, which in the case of p.T860M is likely due to rapid degradation mediated by the proteasome. In addition, the p.R494Q TRPM7 variant significantly increases TRPM7 ion channel current, in a cell-type specific manner. They believe that TRPM7 may play a key role in ensuring correct cardiac development of the fetus. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.4091 | ZFYVE19 |
Arina Puzriakova gene: ZFYVE19 was added gene: ZFYVE19 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: ZFYVE19 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: ZFYVE19 were set to 32737136 Phenotypes for gene: ZFYVE19 were set to Cholestasis Review for gene: ZFYVE19 was set to GREEN Added comment: PMID: 32737136 (2020) - Nine Han Chinese children from seven families with biallelic, predicted complete LoF variants in ZFYVE19. All patients had high-GGT intrahepatic cholestasis, portal hypertension, and histopathological features of the ductal plate malformation/congenital hepatic fibrosis. ZFYVE19 depletion in cultured cells from one patient yielded centriolar and axonemal abnormalities, and immunostaining for two ciliary proteins DCDC2 and ACALT showed abnormal localisation in patient cholangiocytes, indicating this as a novel ciliopathy disorder. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.3732 | FAM50A |
Zornitza Stark gene: FAM50A was added gene: FAM50A was added to Mendeliome. Sources: Literature Mode of inheritance for gene: FAM50A was set to X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) Publications for gene: FAM50A were set to 32703943 Phenotypes for gene: FAM50A were set to Mental retardation syndrome, X-linked, Armfield type (MIM #300261) Review for gene: FAM50A was set to GREEN Added comment: Lee et al (2020 - PMID: 32703943) provide evidence that Armfield X-Linked intellectual disability syndrome is caused by monoallelic FAM50A pathogenic variants. The current review is based only on this reference. The authors provide clinical details on 6 affected individuals from 5 families. Features included postnatal growth delay, DD and ID (6/6 - also evident for those without formal IQ assesment), seizures (3/6 from 2 families), prominent forehead with presence of other facial features and variable head circumference (5th to >97th %le), ocular anomalies (5/6 - strabismus/nystagmus/Axenfeld-Rieger), cardiac (3/6 - ASD/Fallot) and genitourinary anomalies (3/6). In the first of these families (Armfield et al 1999 - PMID: 10398235), linkage analysis followed by additional studies (Sanger, NGS of 718 genes on chrX, X-exome NGS - several refs provided) allowed the identification of a FAM50A variant. Variants in other families were identified by singleton (1 fam) or trio-ES (3 fam). In affected individuals from 3 families, the variant had occurred de novo. Carrier females in the other families were unaffected (based on pedigrees and/or the original publication). XCI was rather biased in most obligate carrier females from the 1st family (although this ranged from 95:5 to 60:40). Missense variants were reported in all affected subjects incl. Trp206Gly, Asp255Gly, Asp255Asn (dn), Glu254Gly (dn), Arg273Trp (dn) (NM_004699.3). Previous studies have demonstrated that FAM50A has ubiquitous expression in human fetal and adult tissues (incl. brain in fetal ones). Immunostaining suggests a nuclear localization for the protein (NIH/3T3 cells). Comparison of protein levels in LCLs from affected males and controls did not demonstrate significant differences. Protein localization for 3 variants (transfection of COS-7 cells) was shown to be similar to wt. Complementation studies in zebrafish provided evidence that the identified variants confer partial loss of function (rescue of the morpholino phenotype with co-injection of wt but not mt mRNA). The zebrafish ko model seemed to recapitulate the abnormal development of cephalic structures and was indicative of diminished/defective neurogenesis. Transcriptional dysregulation was demonstrated in zebrafish (altered levels and mis-splicing). Upregulation of spliceosome effectors was demonstrated in ko zebrafish. Similarly, mRNA expression and splicing defects were demonstrated in LCLs from affected individuals. FAM50A pulldown followed by mass spectrometry in transfected HEK293T cells demonstrated enrichment of binding proteins involved in RNA processing and co-immunoprecipitation assays (transfected U-87 cells) suggested that FAM50A interacts with spliceosome U5 and C-complex proteins. Overall aberrant spliceosome C-complex function is suggested as the underlying pathogenetic mechanism. Several other neurodevelopmental syndromes are caused by variants in genes encoding C-complex affiliated proteins (incl. EFTUD2, EIF4A3, THOC2, etc.). Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.3713 | HYLS1 |
Melanie Marty changed review comment from: A recurring homozygous missense variant p.Asp211Gly has been identified in at least 64 cases of hydrolethalus syndrome, described as a Finnish founder mutation (PMID: 15843405, PMID: 18648327). Functional studies in human and patient cells have shown mislocalisation of the protein to the nucleus (PMID: 15843405, PMID: 19400947). Functional studies in c. elegans showed that this variant impaired ciliogenesis (PMID: 19656802). Functional studies in drosophila showed that deletion of HYLS1 led to cilia dysfunction (PMID: 32509774). 2 homozygous living siblings (stop-loss, extension variant p.Ter300TyrextTer11) both diagnosed with Joubert syndrome. Patients had molar tooth signs and dysplasia of cerebellar vermis (PMID: 26830932). No other variants have been reported as pathogenic in this gene.; to: A recurring homozygous missense variant p.Asp211Gly has been identified in at least 64 cases of hydrolethalus syndrome, described as a Finnish founder mutation (PMID: 15843405, PMID: 18648327). Functional studies in human cells have shown mislocalisation of the protein to the nucleus (PMID: 19400947). Functional studies in c. elegans showed that this variant impaired ciliogenesis (PMID: 19656802). Functional studies in drosophila showed that deletion of HYLS1 led to cilia dysfunction (PMID: 32509774). 2 homozygous living siblings (stop-loss, extension variant p.Ter300TyrextTer11) both diagnosed with Joubert syndrome. Patients had molar tooth signs and dysplasia of cerebellar vermis (PMID: 26830932). No other variants have been reported as pathogenic in this gene. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.3653 | CRY1 |
Ee Ming Wong gene: CRY1 was added gene: CRY1 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: CRY1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: CRY1 were set to PMID: 28388406; PMID: 32538895 Phenotypes for gene: CRY1 were set to Attention deficit/hyperactivity disorder (ADHD); Delayed sleep phase disorder (DSPD), Penetrance for gene: CRY1 were set to Incomplete Review for gene: CRY1 was set to GREEN gene: CRY1 was marked as current diagnostic Added comment: - Splice variants identified in 7 families with ADHD and DSPD - Gain of function suggested for CRY1Δ11 (PMID: 28388406) - Loss of function suggested for CRY1Δ6 (HEK293T cells transfected with a Per1::Luc reporter plasmid showed reduced repressor activity compared to WT and CRY1Δ11) Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.3590 | ANO1 |
Arina Puzriakova changed review comment from: PMID: 32487539 (2020) - Two affected sibs presenting in early infancy with impaired intestinal peristalsis, intestinal pneumatosis and dysmorphic features. Delayed motor and language development was reported in one sibling, however, the other sibling died at 5 months from cardiac arrest and therefore a psychomotor assessment was performed. Exome sequencing identified a homozygous truncating variant (c.897+3_897+6delAAGT, p.L300Vfs*58) in ANO1 which segregated with disease in the family. Functional data revealed that the variant led to lack of expression of functional TMEM16A in patient cells, which in turn abolished calcium-activated Cl- currents. Also supportive mouse model. Sources: Literature; to: PMID: 32487539 (2020) - Two affected sibs presenting in early infancy with impaired intestinal peristalsis, intestinal pneumatosis and dysmorphic features. Delayed motor and language development was reported in one sibling, however, the other sibling died at 5 months from cardiac arrest and therefore a psychomotor assessment was not performed. Exome sequencing identified a homozygous truncating variant (c.897+3_897+6delAAGT, p.L300Vfs*58) in ANO1 which segregated with disease in the family. Functional data revealed that the variant led to lack of expression of functional TMEM16A in patient cells, which in turn abolished calcium-activated Cl- currents. Also supportive mouse model. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.3590 | ANO1 |
Arina Puzriakova gene: ANO1 was added gene: ANO1 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: ANO1 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: ANO1 were set to 32487539 Added comment: PMID: 32487539 (2020) - Two affected sibs presenting in early infancy with impaired intestinal peristalsis, intestinal pneumatosis and dysmorphic features. Delayed motor and language development was reported in one sibling, however, the other sibling died at 5 months from cardiac arrest and therefore a psychomotor assessment was performed. Exome sequencing identified a homozygous truncating variant (c.897+3_897+6delAAGT, p.L300Vfs*58) in ANO1 which segregated with disease in the family. Functional data revealed that the variant led to lack of expression of functional TMEM16A in patient cells, which in turn abolished calcium-activated Cl- currents. Also supportive mouse model. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.3590 | GNPNAT1 |
Arina Puzriakova changed review comment from: Four affected sibs from a consanguineous Pakistani family with skeletal dysplasia, characterised by severe short stature, rhizomelic shortening of the limbs, and metacarpal and metatarsal length irregularities in the hands and feet. WGS revealed a homozygous missense variant (c.226G>A; p.Glu76Lys) in GNPNAT1, which segregating with the phenotype. Gnpnat1 gene knockdown in primary rat chondrocytes decreased cellular proliferation and expression of chondrocyte differentiation markers, indicating the importance of Gnpnat1 for growth plate chondrocyte proliferation and differentiation. Sources: Literature; to: PMID: 32591345 (2020) - Four affected sibs from a consanguineous Pakistani family with skeletal dysplasia, characterised by severe short stature, rhizomelic shortening of the limbs, and metacarpal and metatarsal length irregularities in the hands and feet. WGS revealed a homozygous missense variant (c.226G>A; p.Glu76Lys) in GNPNAT1, which segregating with the phenotype. Gnpnat1 gene knockdown in primary rat chondrocytes decreased cellular proliferation and expression of chondrocyte differentiation markers, indicating the importance of Gnpnat1 for growth plate chondrocyte proliferation and differentiation. Additional cases required to validate pathogenicity of GNPNAT1. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.3590 | GNPNAT1 |
Arina Puzriakova gene: GNPNAT1 was added gene: GNPNAT1 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: GNPNAT1 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: GNPNAT1 were set to 32591345 Phenotypes for gene: GNPNAT1 were set to Rhizomelic skeletal dysplasia Review for gene: GNPNAT1 was set to RED Added comment: Four affected sibs from a consanguineous Pakistani family with skeletal dysplasia, characterised by severe short stature, rhizomelic shortening of the limbs, and metacarpal and metatarsal length irregularities in the hands and feet. WGS revealed a homozygous missense variant (c.226G>A; p.Glu76Lys) in GNPNAT1, which segregating with the phenotype. Gnpnat1 gene knockdown in primary rat chondrocytes decreased cellular proliferation and expression of chondrocyte differentiation markers, indicating the importance of Gnpnat1 for growth plate chondrocyte proliferation and differentiation. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.3586 | IVNS1ABP |
Bryony Thompson gene: IVNS1ABP was added gene: IVNS1ABP was added to Mendeliome. Sources: Literature Mode of inheritance for gene: IVNS1ABP was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: IVNS1ABP were set to 32499645 Phenotypes for gene: IVNS1ABP were set to Primary immunodeficiency Review for gene: IVNS1ABP was set to GREEN Added comment: 3 unrelated families with putative loss of function variants. Case features and immunophenotyping of patient cells is suggestive of a combined immune deficiency, based on the ESID definitions of PID subtypes. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.3582 | SOCS1 |
Bryony Thompson gene: SOCS1 was added gene: SOCS1 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: SOCS1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: SOCS1 were set to 32499645; 10490099; 10490100 Phenotypes for gene: SOCS1 were set to Common variable immunodeficiency Review for gene: SOCS1 was set to GREEN Added comment: 2 unrelated families with truncating variants with supportive immunophenotyping of patient cells, and supporting null mouse models. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.3518 | ATP13A3 |
Zornitza Stark gene: ATP13A3 was added gene: ATP13A3 was added to Mendeliome. Sources: Expert list Mode of inheritance for gene: ATP13A3 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: ATP13A3 were set to 31798832; 30679663; 29650961 Phenotypes for gene: ATP13A3 were set to Pulmonary arterial hypertension Review for gene: ATP13A3 was set to GREEN Added comment: Three heterozygous frameshift variants, three stop gained, two splice region variants in ATP13A3, which are predicted to lead to loss of ATPase catalytic activity identified in idiopathic/familial PAH cases. Also one case with putative recessive inheritance reported. ATP13A3 mRNA expression is confirmed in primary PASMCs and endothelial cells where its loss hindered proliferation and enhanced apoptosis of endothelial cells, which is known as the initiation event of PAH. Sources: Expert list |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.3325 | TBC1D2B |
Zornitza Stark gene: TBC1D2B was added gene: TBC1D2B was added to Mendeliome. Sources: Expert Review Mode of inheritance for gene: TBC1D2B was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: TBC1D2B were set to 32623794 Phenotypes for gene: TBC1D2B were set to Global developmental delay; Intellectual disability; Seizures; Gingival overgrowth; Behavioral abnormality; Abnormality of the mandible; Abnormality of brain morphology; Abnormality of the eye; Hearing abnormality Review for gene: TBC1D2B was set to GREEN Added comment: Harms et al (2020 - PMID: 32623794) report on 3 unrelated individuals with biallelic pLoF TBC1D2B variants. Features included cognitive impairment (mild ID in one case, regression at the age of 12y in another, hypotonia and delayed milestones in a third aged 8m), seizures (3/3 - variable age of onset) and/or gingival overgrowth (2/3 - prior to initiation of AEDs). Other findings included behavioral abnormalities, mandibular anomalies, abnormal brain imaging and ophthalmologic or (rarely) audiometric evaluations. All were born to non-consanguineous couples and additional investigations were performed in some. Variants were identified by WES or trio WGS, with Sanger confirmation/compatible segregation analyses. In line with the pLoF variants, mRNA studies in fibroblasts from 2 unrelated affected individuals demonstrated significantly reduced (~80-90%) TBC1C2D mRNA levels compared to controls, restored following cycloheximide treatment. Protein was absent in patient fibroblasts. TBC-domain containing GTPase activating proteins are known as key regulators of RAB GTPase activity. TBC1D2B was shown to colocalize with RAB5-positive endocytic vesicles. CRISPR/Cas9-mediated ko of TBC1D2B in HeLa cells suggested a role in EGF receptor endocytosis and decreased cell viability of TBC1D2B-deficient HeLa cells upon serum deprivation. Genes encoding other TBC domain-containg GTPase-activating proteins, e.g. TBC1D7 and TBC1D20, TBC1D24 are associated with recessive neurodevelopmental disorders (with ID and/or seizures) and the pathophysiological defect in TBC1D2B-related disorder (deficit in vesicle trafficking and/or cell survival) is proposed to be similar to that of TBC1D24. Sources: Expert Review |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.3323 | EXOC2 |
Zornitza Stark gene: EXOC2 was added gene: EXOC2 was added to Mendeliome. Sources: Expert Review Mode of inheritance for gene: EXOC2 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: EXOC2 were set to 32639540 Phenotypes for gene: EXOC2 were set to Global developmental delay; Intellectual disability; Abnormality of the face; Abnormality of brain morphology Review for gene: EXOC2 was set to AMBER Added comment: Van Bergen et al (2020 - PMID: 32639540) report on 3 individuals from 2 families, harboring biallelic EXOC2 mutations. Clinical presentation included DD, ID (severe in 2 subjects from fam1, borderline intellectual functioning in fam2), dysmorphic features and brain abnormalities. Cerebellar anomalies were common to all with a molar tooth sign observed in one (1/3). Other findings limited to subjects from one family included acquired microcephaly, congenital contractures, spastic quadriplegia (each observed 2/3). Previous investigations were in all cases non-diagnostic. WES identified biallelic EXOC2 mutations in all affected individuals. EXOC2 encodes an exocyst subunit. The latter is an octameric complex, component of the membrane transport machinery, required for tethering and fusion of vesicles at the plasma membrane. As discussed ,vesicle transport is important for the development of brain and the function of neurons and glia. Exocyst function is also important for delivery of Arl13b to the primary cilium (biallelic ARL13B mutations cause Joubert syndrome 8) and ciliogenesis. Affected subjects from a broader consanguineous family (fam1) were homozygous for a truncating variant. Fibroblast studies revealed mRNA levels compatible with NMD (further restored in presence of CHX) as well as reduced protein levels. The female belonging to the second non-consanguineous family was found to harbor 2 missense variants in trans configuration. An exocytosis defect was demonstrated in fibroblasts from individuals belonging to both families. Ciliogenesis appeared to be normal, however Arl13b localization/recruitment to the cilia was reduced compared with control cells with the defect rescued upon exogenous expression of wt EXOC2. Mutations in other genes encoding components of the exocyst complex have been previously reported in individuals with relevant phenotypes (e.g. EXOC8 in a boy with features of Joubert s. or EXOC4 in nephrotic syndrome). The authors discuss on the essential role of EXOC2 based on model organism studies (e.g. impaired neuronal membrane traffic, failure of neuronal polarization and neuromuscular junction expansion seen in Drosophila Sec5 (EXOC2) null mutants). Sources: Expert Review |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.3241 | BTG4 |
Ain Roesley gene: BTG4 was added gene: BTG4 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: BTG4 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: BTG4 were set to PMID: 32502391 Phenotypes for gene: BTG4 were set to Zygotic cleavage failure (ZCF) Penetrance for gene: BTG4 were set to unknown Added comment: PMID: 32502391 - 4 affecteds from 4 families including 3 consanguineous families. 3 PTVs + 1 splice. - in vitro assays in HELA cells showed all PTVs had complete loss of protein. The missense variant had abolished interaction with CNOT7 - In vivo studies further demonstrated that the process of maternal mRNA decay was disrupted in the zygotes of the affected individuals, which provides a mechanistic explanation for the phenotype of ZCF Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.3196 | EXOC7 |
Zornitza Stark gene: EXOC7 was added gene: EXOC7 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: EXOC7 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: EXOC7 were set to 32103185 Phenotypes for gene: EXOC7 were set to brain atrophy; seizures; developmental delay; microcephaly Review for gene: EXOC7 was set to GREEN Added comment: 4 families with 8 affected individuals with brain atrophy, seizures, and developmental delay, and in more severe cases microcephaly and infantile death. Four novel homozygous or comp.heterozygous variants found in EXOC7, which segregated with disease in the families. They showed that EXOC7, a member of the mammalian exocyst complex, is highly expressed in developing human cortex. In addition, a zebrafish model of Exoc7 deficiency recapitulates the human disorder with increased apoptosis and decreased progenitor cells during telencephalon development, suggesting that the brain atrophy in human cases reflects neuronal degeneration. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.3017 | PERP |
Zornitza Stark gene: PERP was added gene: PERP was added to Mendeliome. Sources: Literature Mode of inheritance for gene: PERP was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: PERP were set to 31898316 Phenotypes for gene: PERP were set to Erythrokeratoderma, no OMIM # yet Review for gene: PERP was set to AMBER Added comment: One extended multiplex consanguineous family with Erythrokeratoderma (striking similarity to that observed in Perp −/− mice), and a novel homozygous variant (c.466G>A; p.Gly156Arg) in PERP that fully segregated with the phenotype. Functional analysis of patient‐ and control‐derived keratinocytes revealed a deleterious effect of the identified variant on the intracellular localization of PERP. A previous report showed that PERP mutation causes a dominant form of keratoderma but a single patient in that report with a homozygous variant in PERP suggests that recessive inheritance is also possible. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.3015 | ADCY6 |
Zornitza Stark gene: ADCY6 was added gene: ADCY6 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: ADCY6 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: ADCY6 were set to 24319099; 26257172; 31846058 Phenotypes for gene: ADCY6 were set to Lethal congenital contracture syndrome 8, OMIM # 616287 Review for gene: ADCY6 was set to GREEN Added comment: Laquerriere et al. (2014): 2 sibs from a consanguineous family with an axoglial form of lethal congenital contracture syndrome, and homozygous missense ADCY6 mutation (R1116C). The parents were heterozygous for the mutation. Knocked down ADCY6 orthologs in zebrafish showed a loss of myelin basic protein expression in the peripheral nervous system but no defects in Schwann cell migration and axonal growth. Gonzaga‐Jauregui et al. (2015): 1 patient with congenital hypotonia, distal joint contractures, hypomyelinating neuropathy, and vocal cord paralysis, and a homozygous missense ADCY6 variant. No functional studies. Deceased sister with a similar phenotype with hypotonia, areflexia, and hypomyelinating neuropathy who died at 18 months of respiratory insufficiency. Agolini et al. (2020): 1 patient with severe form of AMC, with two novel compound heterozygous variants in ADCY6 (parents confirmed carriers), but no functional studies. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.3010 | OTUD7A |
Zornitza Stark gene: OTUD7A was added gene: OTUD7A was added to Mendeliome. Sources: Literature Mode of inheritance for gene: OTUD7A was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: OTUD7A were set to 31997314 Phenotypes for gene: OTUD7A were set to Epileptic encephalopathy, no OMIM# yet Review for gene: OTUD7A was set to RED Added comment: One patient with severe global developmental delay, language impairment and epileptic encephalopathy. Homozygous OTUD7A missense variant (c.697C>T, p.Leu233Phe), predicted to alter an ultraconserved amino acid, lying within the OTU catalytic domain. Its subsequent segregation analysis revealed that the parents, presenting with learning disability, and brother were heterozygous carriers. Biochemical assays demonstrated that proteasome complex formation and function were significantly reduced in patient‐derived fibroblasts and in OTUD7A knockout HAP1 cell line. Gene lies in the chromosome 15q13.3 region. Heterozygous microdeletions of chromosome 15q13.3 show incomplete penetrance and are associated with a highly variable phenotype that may include intellectual disability, epilepsy, facial dysmorphism and digit anomalies. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.2955 | VWA3B |
Bryony Thompson gene: VWA3B was added gene: VWA3B was added to Mendeliome. Sources: Expert list Mode of inheritance for gene: VWA3B was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: VWA3B were set to 26157035 Phenotypes for gene: VWA3B were set to Spinocerebellar ataxia, autosomal recessive 22 MIM#616948 Review for gene: VWA3B was set to AMBER Added comment: A homozygous missense variant was identified in 3 brothers from a single consanguineous Japanese family with autosomal recessive cerebellar ataxia. Transfection of the mutant VWA3B protein into several different cultured cell lines resulted in decreased cell viability. Sources: Expert list |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.2932 | DNAH6 |
Elena Savva gene: DNAH6 was added gene: DNAH6 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: DNAH6 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: DNAH6 were set to PMID: 26918822 Phenotypes for gene: DNAH6 were set to Heterotaxy, Azoospermia Review for gene: DNAH6 was set to AMBER Added comment: PMID: 26918822 - zebrafish model has disrupted motile cilia and cilia length, with some body axis defects within embryos. Transfected human cells also had defective motile cilia and cilia width. Two patients with heterotaxy, one homozygous (missense), the other heterozygous (missense), but the heterozygous carrier has an additional known PCD mutation in DNA1. Summary: 1 convincing patient with animal model Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.2861 | FAT1 |
Ee Ming Wong changed review comment from: - 5 consanguineous families with homozygous frameshift mutations in FAN1 - FAN1 KO mice had microphthalmia, with fully penetrant coloboma which was not observed in heterozygous mice - in human retinal pigment epithelium (RPE) cells, FAN1 knockdown resulted in compromised early cell-cell junction integrity and filament organisation; to: - 5 consanguineous families with homozygous frameshift mutations in FAN1 - FAN1 KO mice had microphthalmia, with fully penetrant coloboma which was not observed in heterozygous mice - in human retinal pigment epithelium (RPE) cells, FAN1 knockdown resulted in compromised early cell-cell junction integrity and filament organisation |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.2842 | B9D1 |
Zornitza Stark changed review comment from: Two unrelated individuals with JS and bi-allelic variants in this gene, plus one individual with a more severe Meckel phenotype described. Intellectual disability is part of the phenotype. Sources: Expert list; to: Two unrelated individuals with JS and bi-allelic variants in this gene, plus one individual with a more severe Meckel phenotype described. This latter individual had a splice site variant and a deletion. Splice variant proven to result in exon skipping -> PTC, but the deletion spans a large region including 18 other genes. Patient also had an additional variant in CEP290 called LP. Authors perform functional studies on patient cells but given the large deletion/CEP290 variant i dont see the results are usable PMID: 25920555 - another report of digenic inheritance - not usable, patient was only heterozygous for a single B9D1 variant. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.2786 | TOMM70 |
Zornitza Stark gene: TOMM70 was added gene: TOMM70 was added to Mendeliome. Sources: Expert list Mode of inheritance for gene: TOMM70 was set to BOTH monoallelic and biallelic, autosomal or pseudoautosomal Publications for gene: TOMM70 were set to 31907385; 32356556 Phenotypes for gene: TOMM70 were set to Severe anaemia, lactic acidosis, developmental delay; White matter abnormalities, developmental delay, regression, movement disorder Review for gene: TOMM70 was set to AMBER Added comment: TOM70 is a member of the TOM complex that transports cytosolic proteins into mitochondria. Bi-allelic disease: one individual reported with compound heterozygous variants in TOMM70 [c.794C>T (p.T265M) and c.1745C>T (p.A582V)]. Clinical features included severe anaemia, lactic acidosis, and developmental delay. Some functional data: in vitro cell model compensatory experiments. Monoallelic disease: de novo mono allelic variants in the C-terminal region of TOMM70 reported in two individuals. While both individuals exhibited shared symptoms including hypotonia, hyperreflexia, ataxia, dystonia, and significant white matter abnormalities, there were differences between the two individuals, most prominently the age of symptom onset, with one experiencing episodes of regression. Some functional data. Sources: Expert list |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.2729 | CCDC28B | Zornitza Stark edited their review of gene: CCDC28B: Added comment: PMID: 32139166 - Single family with Joubert syndrome. Patient was homozygous for a missense, with polydactyly, severe ID, and the molar tooth sign observed in MRI. Sibling fetus MRI showed vermis hypoplasia, and was also homozygous for the variant. Parents confirmed unaffected carriers. Knockdown of CCDC28B in human TERT retinal pigment epithelial cells reduced both the number and length of cilia 430C-T variant is postulated to be a modifier of BBS.; Changed rating: AMBER; Changed publications: 32139166; Changed phenotypes: {Bardet-Biedl syndrome 1, modifier of}, MIM#209900, Joubert syndrome | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.2715 | NID1 | Zornitza Stark Phenotypes for gene: NID1 were changed from to Dandy-Walker malformation and occipital cephalocele; Hydrocephalus with or without seizures | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.2712 | NID1 | Zornitza Stark reviewed gene: NID1: Rating: GREEN; Mode of pathogenicity: None; Publications: 23674478, 25558065, 12480912, 30773799; Phenotypes: Dandy-Walker malformation and occipital cephalocele, Hydrocephalus with or without seizures; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.2686 | CD4 | Zornitza Stark reviewed gene: CD4: Rating: AMBER; Mode of pathogenicity: None; Publications: 31781092; Phenotypes: Absence of CD4+ T cells, exuberant, relapsing, treatment-refractory warts; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.2669 | ITPKB |
Zornitza Stark gene: ITPKB was added gene: ITPKB was added to Mendeliome. Sources: Literature Mode of inheritance for gene: ITPKB was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: ITPKB were set to 31987846 Phenotypes for gene: ITPKB were set to Severe combined immunodeficiency, absent T cells, present B cells and NK cells Review for gene: ITPKB was set to RED Added comment: Single individual with homozygous bi-allelic LoF variant reported. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.2620 | GALM |
Hazel Phillimore gene: GALM was added gene: GALM was added to Mendeliome. Sources: Literature Mode of inheritance for gene: GALM was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: GALM were set to PMID: 30451973; 30910422 Phenotypes for gene: GALM were set to galactosaemia; type IV galactosaemia Review for gene: GALM was set to GREEN Added comment: Homozygous and compound heterozygous variants (missense, nonsense and frameshift) found in 8 Japanese patients from unrelated families with unexplained galactosaemia. (No variants in GALT, GALK1, and GALE). This is therefore type IV galactosaemia. In vitro expression analysis and enzyme activity assay of the patients’ peripheral blood mononuclear cells showed total lack of or compromised expression of GALM protein. Loss-of-function mechanism. One homozygote for one of these variants p.(Gly142Arg) in gnomAD (African population). (Wada, Y. et al 2019; PMID: 30451973) In vitro expression assay and an enzyme activity assay of 67 GALM variants, taken from ExAc database (missense, nonsense, frameshift and splice). 30 variants concluded to be pathogenic due to no protein expression or faint expression. 5 variants with mildly lower levels were determined as likely pathogenic. All concluded to be loss-of-function mechanism. Incidence of galactosaemia by GALM deficiency is comparable to that of other galactosaemias. Carrier frequency and incidence was estimated for different populations. (Iwasawa, S. et al. (2019); PMID: 30910422) Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.2611 | PDGFRB |
Ee Ming Wong changed review comment from: - > 3 unrelated families - Functional studies on patient fibroblasts, HeLa and HEK293 cells harbouring mutant constructs demonstrate constitutive tyrosine kinase activation (gain of function) compared with WT constructs; to: - > 3 unrelated individuals diagnosed with Penttinen syndrome - Functional studies on patient fibroblasts, HeLa and HEK293 cells harbouring mutant constructs demonstrate constitutive tyrosine kinase activation (gain of function) compared with WT constructs |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.2607 | FOXF2 |
Hazel Phillimore changed review comment from: Homozygous missense, NM_001452.1: c.325A>T (p.I109F), in a 10 year old girl (consanguineous, parents were first cousins) with profound sensorineural hearing loss (SNHL) associated with incomplete partition type I anomaly of the cochlea. This variant is absent in the gnomAD v2.1.1. In vitro studies indicated instability, shorter half-life of the protein compared to wildtype. Embryonic knockout mouse showed shortened and malformed cochleae, in addition to altered shape of hair cells with innervation and planar cell polarity defects. Homozygous knockout mice do not survive. (Bademci, G. et al. (2019); PMID: 30561639). This gene has also been reported in association with other anomalies including cleft lip, cleft palate, brain anomalies, intestine anomalies, and eye anomalies. Eye anomalies include anterior segment dysgenesis, as shown in mice with variant, W174R, affecting the Fox domain. Homozygote mice do not survive. (McKeone, R. et al. (2011); PMID: 22022403). Sources: Literature; to: Homozygous missense, NM_001452.1: c.325A>T (p.I109F), in a 10 year old girl (consanguineous, parents were first cousins) with profound sensorineural hearing loss (SNHL) associated with incomplete partition type I anomaly of the cochlea. This variant is absent in the gnomAD v2.1.1. In vitro studies indicated instability, shorter half-life of the protein compared to wildtype. Embryonic knockout mouse showed shortened and malformed cochleae, in addition to altered shape of hair cells with innervation and planar cell polarity defects. Homozygous knockout mice do not survive. (Bademci, G. et al. (2019); PMID: 30561639). This gene has also been reported in association with other anomalies including cleft lip, cleft palate, brain anomalies, intestine anomalies, and eye anomalies. Eye anomalies include anterior segment dysgenesis, as shown in mice with variant, W174R, affecting the Fox domain. Homozygote mice do not survive. (McKeone, R. et al. (2011); PMID: 22022403). Previous names for FOXF2 include FKHL6 and FREAC2. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.2607 | FOXF2 |
Hazel Phillimore gene: FOXF2 was added gene: FOXF2 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: FOXF2 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: FOXF2 were set to PMID: 30561639; 22022403 Phenotypes for gene: FOXF2 were set to profound sensorineural hearing loss (SNHL); cochlea malformations; incomplete partition type I anomaly of the cochlea Review for gene: FOXF2 was set to AMBER Added comment: Homozygous missense, NM_001452.1: c.325A>T (p.I109F), in a 10 year old girl (consanguineous, parents were first cousins) with profound sensorineural hearing loss (SNHL) associated with incomplete partition type I anomaly of the cochlea. This variant is absent in the gnomAD v2.1.1. In vitro studies indicated instability, shorter half-life of the protein compared to wildtype. Embryonic knockout mouse showed shortened and malformed cochleae, in addition to altered shape of hair cells with innervation and planar cell polarity defects. Homozygous knockout mice do not survive. (Bademci, G. et al. (2019); PMID: 30561639). This gene has also been reported in association with other anomalies including cleft lip, cleft palate, brain anomalies, intestine anomalies, and eye anomalies. Eye anomalies include anterior segment dysgenesis, as shown in mice with variant, W174R, affecting the Fox domain. Homozygote mice do not survive. (McKeone, R. et al. (2011); PMID: 22022403). Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.2549 | GAD1 | Zornitza Stark edited their review of gene: GAD1: Added comment: 2020: 11 individuals from 6 consanguineous families reported with bi-allelic LOF variant and a developmental/epileptic encephalopathy. Seizure onset occurred in the first 2 months of life in all. All 10 individuals, from whom early disease history was available, presented with seizure onset in the first month of life, mainly consisting of epileptic spasms or myoclonic seizures. Early EEG showed suppression-burst or pattern of burst attenuation or hypsarrhythmia if only recorded in the post-neonatal period. Eight individuals had joint contractures and/or pes equinovarus. Seven presented a cleft palate and two also had an omphalocele, reproducing the phenotype of the knockout Gad1−/− mouse model. Four individuals died before 4 years of age.; Changed rating: GREEN; Changed publications: 15571623, 32282878; Changed phenotypes: Cerebral palsy, spastic quadriplegic, 1, MIM#603513, Developmental and epileptic encephalopathy | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.2440 | WIPI2 | Melanie Marty edited their review of gene: WIPI2: Added comment: Four homozygous patients from one consanguineous family with intellectual developmental, short stature and variable skeletal anomalies. Functional studies in patient cells showed impaired protein function.; Changed rating: RED; Changed phenotypes: Intellectual developmental disorder with short stature and variable skeletal anomalies 618453 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.2440 | ATOH7 | Paul De Fazio changed review comment from: Segregates with disease in 3 consanguineous families from Pakistan/Turkey and one non-consanguineous family of Swiss origin. Functional effect was demonstrated in the latter family. The mouse homolog is required for retinal ganglion cell and optic nerve formation.; to: Segregates with disease in 3 consanguineous families from Pakistan/Turkey with global eye abnormalities, and one non-consanguineous family of Swiss origin with optic nerve hypoplasia. Functional effect was demonstrated in the latter family. The mouse homolog is required for retinal ganglion cell and optic nerve formation (in mice). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.2378 | WIPI2 |
Melanie Marty gene: WIPI2 was added gene: WIPI2 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: WIPI2 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: WIPI2 were set to 30968111 Phenotypes for gene: WIPI2 were set to Intellectual developmental disorder with short stature and variable skeletal anomalies 618453 Review for gene: WIPI2 was set to AMBER Added comment: Four homozygous patients from one consanguineous family with intellectual developmental, short stature and variable skeletal anomalies. Functional studies in patient cells showed impaired protein function. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.2377 | GSX2 |
Elena Savva gene: GSX2 was added gene: GSX2 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: GSX2 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: GSX2 were set to PMID: 31412107 Phenotypes for gene: GSX2 were set to Diencephalic-mesencephalic junction dysplasia syndrome 2 618646 Review for gene: GSX2 was set to GREEN Added comment: PMID: 31412107 - 2 unrelated patients with homozygous mutations (nonsense, missense). Functional analysis of the missense in transfected HeLa cells demonstrated protein mislocalization and protein expression. Downstream gene expression was also reduced by both mutations. Summary: GREEN - 2 patients and functional evidence Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.2372 | ACKR3 |
Elena Savva gene: ACKR3 was added gene: ACKR3 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: ACKR3 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: ACKR3 were set to PMID: 3121183 Phenotypes for gene: ACKR3 were set to Oculomotor synkinesis Review for gene: ACKR3 was set to AMBER Added comment: No phenotype currently listed in OMIM PMID: 3121183 - 1 family (3 siblings and a cousin) with congenital ptosis and oculomotor synkinesis. Mouse model reciprocated the phenotype. Functional assay using transfected HEK293 cells show protein mislocalization and lower binding affinity Emerging gene-disease association Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.2365 | FUS |
Elena Savva gene: FUS was added gene: FUS was added to Mendeliome. Sources: Literature Mode of inheritance for gene: FUS was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown Publications for gene: FUS were set to PMID: 32281455; 20668259; 20385912 Phenotypes for gene: FUS were set to Amyotrophic lateral sclerosis 6, with or without frontotemporal dementia 608030; Essential tremor, hereditary, 4 614782 Mode of pathogenicity for gene: FUS was set to Other Review for gene: FUS was set to GREEN Added comment: PMID: 32281455 - Reports a case of Pediatric Amyotrophic Lateral Sclerosis. Reviews and shows multiple other reports of ALS casued by FUS PMID: 20668259 - additional reports of ALS PMID: 20385912 - postulated that disruption of this region may disrupt subcellular distribution of FUS, in turn affecting transcription and RNA processing and conferring a toxic gain of function. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.2361 | MYCN | Ain Roesley changed review comment from: PMID: 30573562; case report of an individual with a missense in MYCN with functional studies done in neuronal progenitor/stem cells demonstrating gain-of-function; to: PMID: 30573562; case report of an individual with a missense in MYCN with functional studies done in neuronal progenitor/stem cells demonstrating gain-of-function | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.2361 | MYCN | Ain Roesley edited their review of gene: MYCN: Added comment: PMID: 30573562; case report of an individual with a missense in MYCN with functional studies done in neuronal progenitor/stem cells demonstrating gain-of-function; Changed rating: RED; Changed publications: PMID: 30573562; Changed phenotypes: megalencephaly, ventriculomegaly, hypoplastic corpus callosum, intellectual disability, polydactyly, neuroblastoma | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.2298 | MTCL1 |
Bryony Thompson gene: MTCL1 was added gene: MTCL1 was added to Mendeliome. Sources: Expert list Mode of inheritance for gene: MTCL1 was set to BOTH monoallelic and biallelic, autosomal or pseudoautosomal Publications for gene: MTCL1 were set to 30548255; 28283581 Phenotypes for gene: MTCL1 were set to slowly progressive cerebellar ataxia; mild intellectual disability; seizures; episodic pain; spinocerebellar ataxia Review for gene: MTCL1 was set to AMBER Added comment: Single case with a homozygous loss of function variant in a Polish study of early-onset cerebellar ataxia, and a single family with a single heterozygous missense (p.Val1435Met) identified in two family members with adult-onset spinocerebellar ataxia. Mtcl1 gene disruption in mice results in abnormal motor coordination with Purkinje cell degeneration Sources: Expert list |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.2296 | ATG5 |
Bryony Thompson gene: ATG5 was added gene: ATG5 was added to Mendeliome. Sources: Expert list Mode of inheritance for gene: ATG5 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: ATG5 were set to 16625204; 26812546 Phenotypes for gene: ATG5 were set to Spinocerebellar ataxia, autosomal recessive 25 MIM#617584 Review for gene: ATG5 was set to AMBER Added comment: A homozgyous variant was identified in a single family with two affected siblings. Mice deficient for Atg5 specifically in neural cells and Atg5 null Drosophila develop progressive deficits in motor function. Sources: Expert list |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.2050 | CD247 | Zornitza Stark changed review comment from: Also known as CD3Z. Single individual reported with homozygous germline nonsense variant, which was present in some T cells, but others had the nonsense variant in combination with one of three different missense somatic variants.; to: Also known as CD3Z. Note one individual reported with homozygous germline nonsense variant, which was present in some T cells, but others had the nonsense variant in combination with one of three different missense somatic variants. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.1999 | HAVCR2 |
Zornitza Stark gene: HAVCR2 was added gene: HAVCR2 was added to Mendeliome. Sources: Expert list Mode of inheritance for gene: HAVCR2 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: HAVCR2 were set to 30374066; 30792187 Phenotypes for gene: HAVCR2 were set to T-cell lymphoma, subcutaneous panniculitis-like, MIM# 618398 Review for gene: HAVCR2 was set to GREEN Added comment: Over 20 unrelated individuals reported, note germline confirmation in only a few. Some variants are recurrent: c.245A>G (p.Tyr82Cys) and c.291A>G (p.Ile97Met). Sources: Expert list |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.1957 | C17orf62 |
Zornitza Stark gene: C17orf62 was added gene: C17orf62 was added to Mendeliome. Sources: Expert list Mode of inheritance for gene: C17orf62 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: C17orf62 were set to 30361506; 30312704; 28351984 Phenotypes for gene: C17orf62 were set to Chronic granulomatous disease Review for gene: C17orf62 was set to GREEN Added comment: Seven Icelandic families reported with same homozygous variant, p.Tyr2Ter and an additional family from different ethnic background with different homozygous splice site variant. Functional data, including mouse model. Gene also known as EROS and CYBC1 (HGNC approved name) Sources: Expert list |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.1950 | TNFRSF9 |
Zornitza Stark gene: TNFRSF9 was added gene: TNFRSF9 was added to Mendeliome. Sources: Expert list Mode of inheritance for gene: TNFRSF9 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: TNFRSF9 were set to 30872117; 31501153 Phenotypes for gene: TNFRSF9 were set to EBV lymphoproliferation; B-cell lymphoma; Chronic active EBV infection Review for gene: TNFRSF9 was set to GREEN Added comment: Six unrelated individuals, two with same homozygous G109S missense variant, functional data. Sources: Expert list |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.1949 | CTPS1 | Zornitza Stark Phenotypes for gene: CTPS1 were changed from to Immunodeficiency 24, MIM# 615897; Recurrent/chronic bacterial and viral infections (EBV, VZV); EBV lymphoproliferation; B-cell non-Hodgkin lymphoma | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.1946 | CTPS1 | Zornitza Stark reviewed gene: CTPS1: Rating: GREEN; Mode of pathogenicity: None; Publications: 24870241; Phenotypes: Immunodeficiency 24, MIM# 615897, Recurrent/chronic bacterial and viral infections (EBV, VZV), EBV lymphoproliferation, B-cell non-Hodgkin lymphoma; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.1914 | FCHO1 |
Zornitza Stark gene: FCHO1 was added gene: FCHO1 was added to Mendeliome. Sources: Expert list Mode of inheritance for gene: FCHO1 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: FCHO1 were set to 32098969; 30822429 Phenotypes for gene: FCHO1 were set to Combined immunodeficiency; T cells: low, poor proliferation; B cells: normal number; Recurrent infections (viral, mycobacteria, bacterial, fungal); lymphoproliferation; Failure to thrive; Increased activation-induced T-cell death; Defective clathrin-mediated endocytosis Review for gene: FCHO1 was set to GREEN Added comment: More than 10 affected individuals with bi-allelic variants in this gene reported. Functional data. Sources: Expert list |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.1913 | REL |
Zornitza Stark gene: REL was added gene: REL was added to Mendeliome. Sources: Expert list Mode of inheritance for gene: REL was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: REL were set to 31103457 Phenotypes for gene: REL were set to Combined immunodeficiency; T cells: normal, decreased memory CD4, poor proliferation; B cells: low, mostly naive, few switched memory B cells, impaired proliferation; Recurrent infections with bacteria, mycobacteria, salmonella and opportunistic organisms; Defective innate immunity Review for gene: REL was set to RED Added comment: Single individual from consanguineous family reported with homozygous canonical splice site variant, no functional data. Sources: Expert list |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.1912 | TFRC | Zornitza Stark Phenotypes for gene: TFRC were changed from to Immunodeficiency 46, MIM# 616740; T cells: normal number, poor proliferation; B cells: normal number, low memory B cells; recurrent infections, neutorpaenia; thrombocytopaenia | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.1908 | TFRC | Zornitza Stark reviewed gene: TFRC: Rating: AMBER; Mode of pathogenicity: None; Publications: 26642240; Phenotypes: Immunodeficiency 46, MIM# 616740, T cells: normal number, poor proliferation, B cells: normal number, low memory B cells, recurrent infections, neutorpaenia, thrombocytopaenia; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.1905 | RELB |
Zornitza Stark gene: RELB was added gene: RELB was added to Mendeliome. Sources: Expert list Mode of inheritance for gene: RELB was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: RELB were set to 7834753; 26385063 Phenotypes for gene: RELB were set to Immunodeficiency 53, MIM# 617585; T cells: normal number, poor diversity, poor function; recurrent infections Review for gene: RELB was set to AMBER Added comment: Single family reported, functional data. Sources: Expert list |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.1904 | CD247 | Zornitza Stark Phenotypes for gene: CD247 were changed from to Immunodeficiency 25, MIM# 610163; Absent T cells; Normal B cells; Normal NK cells | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.1901 | CD247 | Zornitza Stark reviewed gene: CD247: Rating: RED; Mode of pathogenicity: None; Publications: 16672702; Phenotypes: Immunodeficiency 25, MIM# 610163, Absent T cells, Normal B cells, Normal NK cells; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.1809 | OXA1L |
Zornitza Stark gene: OXA1L was added gene: OXA1L was added to Mendeliome. Sources: NHS GMS Mode of inheritance for gene: OXA1L was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: OXA1L were set to 30201738; 16435202 Phenotypes for gene: OXA1L were set to Encephalopathy; hypotonia; developmental delay Review for gene: OXA1L was set to AMBER Added comment: Single family reported with biochemical and molecular analyses of patient skeletal muscle and fibroblasts. In vitro functional assays in human cell lines, Drosophila model, and yeast-based assays. Loss of function affects oxidative phosphorylation complexes IV and V. Sources: NHS GMS |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.1779 | TIMM22 |
Zornitza Stark gene: TIMM22 was added gene: TIMM22 was added to Mendeliome. Sources: NHS GMS Mode of inheritance for gene: TIMM22 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: TIMM22 were set to 30452684 Phenotypes for gene: TIMM22 were set to mitochondrial myopathy; hypotonia; gastroesophageal reflux disease Review for gene: TIMM22 was set to AMBER Added comment: One compound heterozygote case identified with supporting in vitro and patient cell functional assays. Sources: NHS GMS |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.1777 | TIMMDC1 |
Zornitza Stark gene: TIMMDC1 was added gene: TIMMDC1 was added to Mendeliome. Sources: NHS GMS Mode of inheritance for gene: TIMMDC1 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: TIMMDC1 were set to 28604674; 30981218 Phenotypes for gene: TIMMDC1 were set to Mitochondrial complex I deficiency, nuclear type 31 MIM#618251 Review for gene: TIMMDC1 was set to AMBER Added comment: A deep intronic variant (c.597-1340A>G, only detectable by WGS) that causes a splicing aberration was identified in a homozygous state in 3 unrelated cases from different ethnic backgrounds. A patient with Leigh-like syndrome had a homozygous stopgain variant in PDHX and a homozygous stopgain variant in TIMMDC1 (p.Arg225*). The TIMMDC1 mutant protein could still rescue complex I assembly in TIMMDC1 knockout cells and the patient’s clinical phenotype was not clearly distinct from that of other patients with the same PDHX defect. Sources: NHS GMS |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.1501 | PTCH2 | Zornitza Stark reviewed gene: PTCH2: Rating: RED; Mode of pathogenicity: None; Publications: 30820324, 23479190, 18285427; Phenotypes: Basal cell nevus syndrome, MIM#109400; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.1500 | PTCH2 | Zornitza Stark Phenotypes for gene: PTCH2 were changed from to Basal cell carcinoma, somatic 605462; Basal cell nevus syndrome, 109400; Medulloblastoma, somatic | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.1473 | PTCH2 | Kristin Rigbye reviewed gene: PTCH2: Rating: RED; Mode of pathogenicity: None; Publications: 30820324; Phenotypes: Basal cell carcinoma, somatic 605462, Basal cell nevus syndrome, 109400, Medulloblastoma, somatic; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.1450 | CEL | Zornitza Stark Marked gene: CEL as ready | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.1450 | CEL | Zornitza Stark Gene: cel has been classified as Amber List (Moderate Evidence). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.1450 | CEL | Zornitza Stark Phenotypes for gene: CEL were changed from to Maturity-onset diabetes of the young, type VIII | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.1449 | CEL | Zornitza Stark Publications for gene: CEL were set to | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.1448 | CEL | Zornitza Stark Mode of inheritance for gene: CEL was changed from Unknown to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.1447 | CEL | Zornitza Stark Classified gene: CEL as Amber List (moderate evidence) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.1447 | CEL | Zornitza Stark Gene: cel has been classified as Amber List (Moderate Evidence). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.1446 | CEL | Zornitza Stark reviewed gene: CEL: Rating: AMBER; Mode of pathogenicity: None; Publications: 24062244, 21784842, 19760265, 18544793, 17989309, 16369531, 29233499, 27650499; Phenotypes: Maturity-onset diabetes of the young, type VIII; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.788 | TDP2 |
Zornitza Stark gene: TDP2 was added gene: TDP2 was added to Mendeliome_VCGS. Sources: Expert list Mode of inheritance for gene: TDP2 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: TDP2 were set to 31410782; 30109272; 24658003 Phenotypes for gene: TDP2 were set to Spinocerebellar ataxia, autosomal recessive 23; OMIM #616949 Review for gene: TDP2 was set to GREEN Added comment: ID is part of the phenotype: 4 families with 6 affected patients, with functional evidence. 1 family with 3 affected sibs with homozygous splice site mutation in the TDP2 gene. Patient cell extracts showed absence of the full-length TDP2 protein and absence of 5-prime TDP activity, consistent with a loss of function, although 3-prime TDP activity, conferred by TDP1, was normal. In addition, patient lymphoblastoid cells were hypersensitive to the TOP2 poison etoposide. The findings indicated impaired capacity for double-strand break repair. 1 unrelated Egyptian patient with a similar disorder was homozygous for a truncating mutation in the TDP2 gene 1 unrelated Caucasian patient with same homozygous splice site mutation in the TDP2 gene. Western blot analysis did not detect TDP2 protein in patient primary skin fibroblasts. Patient fibroblasts showed an inability to rapidly repair topoisomerase-induced DNA double-strand breaks in the nucleus and also showed a profound hypersensitivity to this type of DNA damage. Complementation of patient cells with recombinant human TDP2 restored normal rates of nuclear DSB repair. Sources: Expert list |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.785 | SLC35A3 |
Zornitza Stark Added comment: Comment when marking as ready: 1 family with 2 sibs, with segregation but no functional studies. 1 family with 8 affected people. The mutations segregated with the disorder in the family. Patient cells showed no normal transcript, indicating that they had no functional SLC35A3 protein. Golgi vesicles derived from patient fibroblasts showed significantly reduced transport of UDP-GlCNAc compared to controls. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.780 | SLC9A7 |
Zornitza Stark gene: SLC9A7 was added gene: SLC9A7 was added to Mendeliome_VCGS. Sources: Literature Mode of inheritance for gene: SLC9A7 was set to X-LINKED: hemizygous mutation in males, biallelic mutations in females Publications for gene: SLC9A7 were set to 30335141 Phenotypes for gene: SLC9A7 were set to Intellectual developmental disorder, X-linked 108; OMIM #301024 Review for gene: SLC9A7 was set to AMBER Added comment: 6 males from 2 unrelated families with hemizygous missense mutation in the SLC9A7 gene. The mutation segregated with the disorder in the family. In vitro functional expression studies in CHO cells (AP-1 cells) showed that the mutation caused decreased levels of protein expression and reduced oligosaccharide maturation/glycosylation compared to wildtype, indicating impaired posttranslational processing. Subcellular localization studies indicated that protein trafficking was unaffected by the mutation. However, examination of the trans-Golgi compartment suggested a gain-of-function effect and a perturbation of glycosylation of secretory cargo. Serum transferrin studies in 1 patient suggested a glycosylation defect. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.778 | KIAA1161 |
Zornitza Stark gene: KIAA1161 was added gene: KIAA1161 was added to Mendeliome_VCGS. Sources: Literature Mode of inheritance for gene: KIAA1161 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: KIAA1161 were set to 30656188; 30649222; 30460687; 29910000 Phenotypes for gene: KIAA1161 were set to Basal ganglia calcification, idiopathic, 7, autosomal recessive; OMIM #618317 Review for gene: KIAA1161 was set to GREEN Added comment: Total 9 families, but no functional evidence: 12 patients from 6 unrelated Chinese families reported by Yao et al. (2018) and homozygous or compound heterozygous mutations in the MYORG gene. Functional studies of the variants and studies of patient cells were not performed, but the presence of nonsense mutations suggested a loss of function. 1 Chinese woman identified with homozygous nonsense mutation in the MYORG gene, segregated with the disorder in the family. Functional studies of the variant and studies of patient cells were not performed. 2 unrelated Middle Eastern families with homozygous mutations in the MYORG gene, which segregated with the disorder in the families. Functional studies of the variants were not performed. 4 sibs from one Turkish family with homozygous missense mutation in the MYORG gene, which segregated with the disorder in the family. Functional studies of the variant and studies of patient cells were not performed. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.750 | MYSM1 |
Zornitza Stark gene: MYSM1 was added gene: MYSM1 was added to Mendeliome_VCGS. Sources: Expert list Mode of inheritance for gene: MYSM1 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: MYSM1 were set to 4288411; 28115216; 26220525 Phenotypes for gene: MYSM1 were set to Bone marrow failure syndrome 4, MIM#618116 Review for gene: MYSM1 was set to GREEN Added comment: early-onset anaemia, leukopaenia, and decreased B cells, may have thrombocytopaenia or variable additional non-haematologic features, such as facial dysmorphism, skeletal anomalies, and mild developmental delay Sources: Expert list |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.324 | TANC2 |
Zornitza Stark gene: TANC2 was added gene: TANC2 was added to Mendeliome_VCGS. Sources: Literature Mode of inheritance for gene: TANC2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: TANC2 were set to 31616000 Phenotypes for gene: TANC2 were set to Intellectual disability; autism; epilepsy; dysmorphism Review for gene: TANC2 was set to GREEN Added comment: 19 families with potentially disruptive heterozygous TANC2 variants, including 16 likely gene-disrupting mutations and three intragenic microdeletions. Patients presented with autism, intellectual disability, delayed language and motor development, epilepsy, facial dysmorphism, with complex psychiatric dysfunction or behavioral problems in adult probands or carrier parents. No functional evidence of specific variants, but they show TANC2 is expressed broadly in the human developing brain, especially in excitatory neurons and glial cells, and shows a more restricted pattern in Drosophila glial cells where its disruption affects behavioral outcomes. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.322 | SVBP |
Zornitza Stark gene: SVBP was added gene: SVBP was added to Mendeliome_VCGS. Sources: Literature Mode of inheritance for gene: SVBP was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: SVBP were set to 31363758; 30607023 Phenotypes for gene: SVBP were set to Neurodevelopmental disorder with ataxia, hypotonia, and microcephaly; OMIM #618569 Review for gene: SVBP was set to GREEN Added comment: 5 unrelated families with homozygous mutations in SVBP. The mutations segregated with the disorder in all families. In vitro functional cellular expression studies showed that protein levels of the SVBP mutants were barely detectable, suggesting instability, and that the mutant proteins had lost VASH/SVBP catalytic detyrosination activity toward tubulin. Knockdown of about 50% Svbp expression using shRNA in rat hippocampal neurons impaired the formation of excitatory synapses compared to controls. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.320 | SOX4 |
Zornitza Stark gene: SOX4 was added gene: SOX4 was added to Mendeliome_VCGS. Sources: Literature Mode of inheritance for gene: SOX4 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: SOX4 were set to 30661772 Phenotypes for gene: SOX4 were set to Coffin-Siris syndrome 10; OMIM #618506 Review for gene: SOX4 was set to GREEN Added comment: 4 patients with syndromic DD/ID and de novo mutations in SOX4 gene. Functional assays demonstrated that the SOX4 proteins carrying these variants were unable to bind DNA in vitro and transactivate SOX reporter genes in cultured cells. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.309 | POU3F3 |
Zornitza Stark gene: POU3F3 was added gene: POU3F3 was added to Mendeliome_VCGS. Sources: Literature Mode of inheritance for gene: POU3F3 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: POU3F3 were set to 24550763; 31303265 Phenotypes for gene: POU3F3 were set to Intellectual disability Review for gene: POU3F3 was set to GREEN Added comment: 19 individuals with DD/ID/speech issues and heterozygous POU3F3 disruptions, most of which were de novo variants. Positive functional cell-based analyses of pathogenic variants. 1 patient reported with whole gene deletion and ID. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.308 | PISD | Zornitza Stark commented on gene: PISD: 4 individuals in 2 unrelated but consanguineous families from Portugal and Brazil affected by early-onset retinal degeneration, sensorineural hearing loss, microcephaly, intellectual disability, and skeletal dysplasia with scoliosis and short stature (Liberfarb syndrome). Affected individuals shared a homozygous 10-bp deletion immediately upstream of the last exon of the PISD gene. In HEK293T cells, this variant led to aberrant splicing of PISD transcripts. 1 family with 2 sisters with congenital cataracts, short stature, and white matter changes identified compound heterozygous variants in the PISD gene. Decreased conversion of phosphatidylserine to PE in patient fibroblasts is consistent with impaired phosphatidylserine decarboxylase (PISD) enzyme activity. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.307 | PIGB |
Zornitza Stark gene: PIGB was added gene: PIGB was added to Mendeliome_VCGS. Sources: Literature Mode of inheritance for gene: PIGB was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: PIGB were set to 31256876 Phenotypes for gene: PIGB were set to Epileptic encephalopathy, early infantile, 80; OMIM #618580 Review for gene: PIGB was set to GREEN Added comment: 10 unrelated families with biallelic mutations in PIGB, with global DD and/or ID, and seizures. Two had polymicrogyria, 4 had a peripheral neuropathy, and 2 had a clinical diagnosis of DOORS syndrome. Patient lymphocytes and fibroblasts showed variably decreased levels of cell surface GPI-anchored proteins, including CD16 and CD59. In vitro functional expression studies performed with some of the mutations in PIGB-null CHO cells showed that the mutant proteins were unable to fully restore expression of GPI-anchored surface proteins, consistent with a loss of function, although the mutations had variable effects. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.303 | PHF21A |
Zornitza Stark gene: PHF21A was added gene: PHF21A was added to Mendeliome_VCGS. Sources: Literature Mode of inheritance for gene: PHF21A was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: PHF21A were set to 31649809; 30487643; 22770980 Phenotypes for gene: PHF21A were set to Intellectual disability; dysmorphic features Review for gene: PHF21A was set to GREEN Added comment: 9 cases with intellectual disability and craniofacial anomalies (Potocki-Shaffer syndrome), with de novo truncating variants in PHF21A. No functional evidence of variants, but PHF21A is highly expressed in the human fetal brain, which is consistent with the neurodevelopmental phenotype. 2 other unrelated individuals with translocations disrupting PHF21A. Lymphoblastoid cell lines from translocation subjects showed derepression of the neuronal gene SCN3A and reduced LSD1 occupancy at the SCN3A promoter, supporting a direct functional consequence of PHF21A haploinsufficiency on transcriptional regulation. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.288 | MAST1 |
Zornitza Stark gene: MAST1 was added gene: MAST1 was added to Mendeliome_VCGS. Sources: Literature Mode of inheritance for gene: MAST1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: MAST1 were set to 31721002; 30449657 Phenotypes for gene: MAST1 were set to Mega-corpus-callosum syndrome with cerebellar hypoplasia and cortical malformations; OMIM #618273 Review for gene: MAST1 was set to GREEN Added comment: 6 unrelated patients with mega-corpus-callosum syndrome with cerebellar hypoplasia and cortical malformations (MCCCHCM) with de novo heterozygous mutations in MAST1 gene. In vitro functional studies showed that 1 of the variants (lys276del) increased MAST1 binding to microtubules compared to controls. Mutant mice heterozygous for a Mast1 leu278del allele showed a thicker corpus callosum compared to wildtype, and an overall reduction in cortical volume and thickness and decreased cerebellar volume and number of granule and Purkinje cells due to increased apoptosis compared to controls. 1 Emirati patient with ID, microcephaly, and dysmorphic features, with missense variant in MAST1. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.273 | GABRA5 |
Zornitza Stark gene: GABRA5 was added gene: GABRA5 was added to Mendeliome_VCGS. Sources: Literature Mode of inheritance for gene: GABRA5 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: GABRA5 were set to 31056671; 29961870 Phenotypes for gene: GABRA5 were set to Epileptic encephalopathy, early infantile, 79; OMIM #618559 Review for gene: GABRA5 was set to GREEN Added comment: 3 unrelated patients with de novo heterozygous missense mutations in GABRA5 gene. In vitro functional expression studies in HEK293 cells showed that the mutant subunit was expressed at the surface and incorporated into the channel, but the mutant channel was 10 times more sensitive to GABA compared to wildtype. This increased sensitization resulted in increased receptor desensitization to GABA, with a reduced maximal GABA-evoked current and impaired capacity to pass GABAergic chloride current. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.229 | BCL11B |
Zornitza Stark gene: BCL11B was added gene: BCL11B was added to Mendeliome_VCGS. Sources: Literature Mode of inheritance for gene: BCL11B was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: BCL11B were set to 29985992 Phenotypes for gene: BCL11B were set to Intellectual developmental disorder with dysmorphic facies, speech delay, and T-cell abnormalities, MIM# 618092 Review for gene: BCL11B was set to GREEN Added comment: Nine unrelated individuals, all but one with de novo variants in this gene and syndromic ID/immunodeficiency. Most variants located in the last exon (exon 4) and are predicted to escape nonsense-mediated mRNA decay. Sources: Literature |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.0 | ECEL1P2 |
Zornitza Stark gene: ECEL1P2 was added gene: ECEL1P2 was added to Mendeliome_VCGS. Sources: Expert Review Green,Victorian Clinical Genetics Services Mode of inheritance for gene: ECEL1P2 was set to Unknown |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.0 | ECEL1 |
Zornitza Stark gene: ECEL1 was added gene: ECEL1 was added to Mendeliome_VCGS. Sources: Expert Review Green,Victorian Clinical Genetics Services Mode of inheritance for gene: ECEL1 was set to Unknown |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mendeliome v0.0 | CEL |
Zornitza Stark gene: CEL was added gene: CEL was added to Mendeliome_VCGS. Sources: Expert Review Green,Victorian Clinical Genetics Services Mode of inheritance for gene: CEL was set to Unknown |