Date | Panel | Item | Activity | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BabyScreen+ newborn screening v1.24 | ATRX | Zornitza Stark edited their review of gene: ATRX: Changed phenotypes: ATR-X-related syndrome MONDO:0016980 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v1.24 | ATRX | Zornitza Stark Phenotypes for gene: ATRX were changed from Alpha-thalassemia/mental retardation syndrome, MIM# 301040; Intellectual disability-hypotonic facies syndrome, X-linked, MIM# 309580 to ATR-X-related syndrome MONDO:0016980 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v1.14 | KCNA5 | Zornitza Stark Phenotypes for gene: KCNA5 were changed from Atrial fibrillation to Atrial fibrillation, familial, 7, MIM# 612240 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v1.12 | KCNA5 | Zornitza Stark reviewed gene: KCNA5: Rating: RED; Mode of pathogenicity: None; Publications: ; Phenotypes: Atrial fibrillation, familial, 7, MIM# 612240; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.2137 | KCNJ2 | Zornitza Stark Phenotypes for gene: KCNJ2 were changed from Andersen syndrome MIM#170390; Atrial fibrillation, familial, 9 MIM#613980; Short QT syndrome 3 MIM#609622 to Andersen syndrome MIM#170390 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.2134 | TRDN |
Zornitza Stark changed review comment from: Rated as 'strong actionability' for paediatric patients by ClinGen. The mean age of onset of symptoms (usually a syncopal episode) of CPVT is between age seven and twelve years; onset as late as the fourth decade of life has been reported. Nearly 60% of patients have at least one syncopal episode before age 40. If untreated, CPVT is highly lethal, as approximately 30% of genetically affected individuals experience at least one cardiac arrest and up to 80% one or more syncopal spells. In untreated patients, the 8-year fatal or near-fatal event rates of 25% have been reported. Sudden death may be the first manifestation of the disease. Beta-blockers lacking intrinsic sympathomimetic activity are recommended as a first-line therapy in all patients with a clinical diagnosis of CPVT, including those with documented spontaneous, stress-induced VAs. Guidelines differ in their recommendations about utilizing beta-blocker therapy in phenotype negative individuals. Treatment with beta blockers is associated with a reduction in adverse cardiac events. However, variability in outcome with beta-blocker therapy is due to multiple factors, including dosing and compliance. In a study of 101 patients with CPVT (22 diagnosed clinically and 79 diagnosed molecularly), 81 were administered beta-blockers (57 symptomatic and 24 asymptomatic individuals). Estimated 4- and 8-year cardiac event rates were 8% and 27%, respectively in patients taking beta-blockers, and 33% and 58% in those not taking beta blockers (log-rank p=0.01). Corresponding statistics for fatal events were 1% and 11% with beta-blockers vs. 18% and 25% without (log-rank p=0.05). Event rates in asymptomatic patients with a positive genotype were similar to other patients. In multivariate models, absence of beta-blockers was an independent predictor of cardiac events (hazard ratio [HR], 5.48; 95% CI, 1.8 to 16.7, p=0.003) and of fatal events (HR, 5.54; 95% CI, 1.2 to 26.1, p=0.03). Of the 37 asymptomatic patients with a positive genotype, 9 (24%) had cardiac events. In patients with CPVT and recurrent sustained VT or syncope, while receiving adequate or maximally tolerated beta blocker, treatment intensification with either combination medication therapy (e.g., beta blocker with flecainide), left cardiac sympathetic denervation, and/or an ICD is recommended. Clinical penetrance ranges from 25 to 100%, with an average of 70 to 80%. Syncope appears to be the first symptom in more than half of the patients. When untreated, mortality from CPVT is high, reaching 30 to 50% by the age of 30 years. For review: age of onset and penetrance.; to: Rated as 'strong actionability' for paediatric patients by ClinGen. The mean age of onset of symptoms (usually a syncopal episode) of CPVT is between age seven and twelve years; onset as late as the fourth decade of life has been reported. Nearly 60% of patients have at least one syncopal episode before age 40. If untreated, CPVT is highly lethal, as approximately 30% of genetically affected individuals experience at least one cardiac arrest and up to 80% one or more syncopal spells. In untreated patients, the 8-year fatal or near-fatal event rates of 25% have been reported. Sudden death may be the first manifestation of the disease. Beta-blockers lacking intrinsic sympathomimetic activity are recommended as a first-line therapy in all patients with a clinical diagnosis of CPVT, including those with documented spontaneous, stress-induced VAs. Guidelines differ in their recommendations about utilizing beta-blocker therapy in phenotype negative individuals. Treatment with beta blockers is associated with a reduction in adverse cardiac events. However, variability in outcome with beta-blocker therapy is due to multiple factors, including dosing and compliance. In a study of 101 patients with CPVT (22 diagnosed clinically and 79 diagnosed molecularly), 81 were administered beta-blockers (57 symptomatic and 24 asymptomatic individuals). Estimated 4- and 8-year cardiac event rates were 8% and 27%, respectively in patients taking beta-blockers, and 33% and 58% in those not taking beta blockers (log-rank p=0.01). Corresponding statistics for fatal events were 1% and 11% with beta-blockers vs. 18% and 25% without (log-rank p=0.05). Event rates in asymptomatic patients with a positive genotype were similar to other patients. In multivariate models, absence of beta-blockers was an independent predictor of cardiac events (hazard ratio [HR], 5.48; 95% CI, 1.8 to 16.7, p=0.003) and of fatal events (HR, 5.54; 95% CI, 1.2 to 26.1, p=0.03). Of the 37 asymptomatic patients with a positive genotype, 9 (24%) had cardiac events. In patients with CPVT and recurrent sustained VT or syncope, while receiving adequate or maximally tolerated beta blocker, treatment intensification with either combination medication therapy (e.g., beta blocker with flecainide), left cardiac sympathetic denervation, and/or an ICD is recommended. Clinical penetrance ranges from 25 to 100%, with an average of 70 to 80%. Syncope appears to be the first symptom in more than half of the patients. When untreated, mortality from CPVT is high, reaching 30 to 50% by the age of 30 years. Reviewed with paediatric cardiologist: variable penetrance and age of onset, does not fulfil criteria for gNBS. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.2133 | TECRL |
Zornitza Stark changed review comment from: Rated as 'strong actionability' for paediatric patients by ClinGen. The mean age of onset of symptoms (usually a syncopal episode) of CPVT is between age seven and twelve years; onset as late as the fourth decade of life has been reported. Nearly 60% of patients have at least one syncopal episode before age 40. If untreated, CPVT is highly lethal, as approximately 30% of genetically affected individuals experience at least one cardiac arrest and up to 80% one or more syncopal spells. In untreated patients, the 8-year fatal or near-fatal event rates of 25% have been reported. Sudden death may be the first manifestation of the disease. Beta-blockers lacking intrinsic sympathomimetic activity are recommended as a first-line therapy in all patients with a clinical diagnosis of CPVT, including those with documented spontaneous, stress-induced VAs. Guidelines differ in their recommendations about utilizing beta-blocker therapy in phenotype negative individuals. Treatment with beta blockers is associated with a reduction in adverse cardiac events. However, variability in outcome with beta-blocker therapy is due to multiple factors, including dosing and compliance. In a study of 101 patients with CPVT (22 diagnosed clinically and 79 diagnosed molecularly), 81 were administered beta-blockers (57 symptomatic and 24 asymptomatic individuals). Estimated 4- and 8-year cardiac event rates were 8% and 27%, respectively in patients taking beta-blockers, and 33% and 58% in those not taking beta blockers (log-rank p=0.01). Corresponding statistics for fatal events were 1% and 11% with beta-blockers vs. 18% and 25% without (log-rank p=0.05). Event rates in asymptomatic patients with a positive genotype were similar to other patients. In multivariate models, absence of beta-blockers was an independent predictor of cardiac events (hazard ratio [HR], 5.48; 95% CI, 1.8 to 16.7, p=0.003) and of fatal events (HR, 5.54; 95% CI, 1.2 to 26.1, p=0.03). Of the 37 asymptomatic patients with a positive genotype, 9 (24%) had cardiac events. In patients with CPVT and recurrent sustained VT or syncope, while receiving adequate or maximally tolerated beta blocker, treatment intensification with either combination medication therapy (e.g., beta blocker with flecainide), left cardiac sympathetic denervation, and/or an ICD is recommended. Clinical penetrance ranges from 25 to 100%, with an average of 70 to 80%. Syncope appears to be the first symptom in more than half of the patients. When untreated, mortality from CPVT is high, reaching 30 to 50% by the age of 30 years. For review: age of onset and penetrance. Sources: ClinGen; to: Rated as 'strong actionability' for paediatric patients by ClinGen. The mean age of onset of symptoms (usually a syncopal episode) of CPVT is between age seven and twelve years; onset as late as the fourth decade of life has been reported. Nearly 60% of patients have at least one syncopal episode before age 40. If untreated, CPVT is highly lethal, as approximately 30% of genetically affected individuals experience at least one cardiac arrest and up to 80% one or more syncopal spells. In untreated patients, the 8-year fatal or near-fatal event rates of 25% have been reported. Sudden death may be the first manifestation of the disease. Beta-blockers lacking intrinsic sympathomimetic activity are recommended as a first-line therapy in all patients with a clinical diagnosis of CPVT, including those with documented spontaneous, stress-induced VAs. Guidelines differ in their recommendations about utilizing beta-blocker therapy in phenotype negative individuals. Treatment with beta blockers is associated with a reduction in adverse cardiac events. However, variability in outcome with beta-blocker therapy is due to multiple factors, including dosing and compliance. In a study of 101 patients with CPVT (22 diagnosed clinically and 79 diagnosed molecularly), 81 were administered beta-blockers (57 symptomatic and 24 asymptomatic individuals). Estimated 4- and 8-year cardiac event rates were 8% and 27%, respectively in patients taking beta-blockers, and 33% and 58% in those not taking beta blockers (log-rank p=0.01). Corresponding statistics for fatal events were 1% and 11% with beta-blockers vs. 18% and 25% without (log-rank p=0.05). Event rates in asymptomatic patients with a positive genotype were similar to other patients. In multivariate models, absence of beta-blockers was an independent predictor of cardiac events (hazard ratio [HR], 5.48; 95% CI, 1.8 to 16.7, p=0.003) and of fatal events (HR, 5.54; 95% CI, 1.2 to 26.1, p=0.03). Of the 37 asymptomatic patients with a positive genotype, 9 (24%) had cardiac events. In patients with CPVT and recurrent sustained VT or syncope, while receiving adequate or maximally tolerated beta blocker, treatment intensification with either combination medication therapy (e.g., beta blocker with flecainide), left cardiac sympathetic denervation, and/or an ICD is recommended. Clinical penetrance ranges from 25 to 100%, with an average of 70 to 80%. Syncope appears to be the first symptom in more than half of the patients. When untreated, mortality from CPVT is high, reaching 30 to 50% by the age of 30 years. Reviewed with a paediatric cardiologist: variable penetrance and age of onset, does not fulfil criteria for gNBS. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.2132 | SCN5A |
Zornitza Stark changed review comment from: These two associations have been rated as 'strong actionability' in paediatric patients by ClinGen. Note LongQT generally has symptom onset in adolescence and Brugada typically presents in adulthood. For review: age of onset and penetrance.; to: These two associations have been rated as 'strong actionability' in paediatric patients by ClinGen. Note LongQT generally has symptom onset in adolescence and Brugada typically presents in adulthood. Reviewed with paediatric cardiologist: generally later age of onset, does not fulfil criteria for gNBS. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.2131 | PRKG1 |
Zornitza Stark changed review comment from: Assessed as 'strong actionability' in paediatric patients by ClinGen. FTAAD is a rare genetic vascular disease characterized by the familial occurrence of thoracic aortic aneurysm, dissection, or dilatation affecting one or more aortic segments (aortic root, ascending aorta, arch, or descending aorta). Variable age of clinical presentation. Prophylactic surgical repair of the aorta is recommended at 4.5-5.0 cm for patients with pathogenic variants in MYH11, SMAD3, and ACTA2 and at 4.0-4.5 cm for patients with pathogenic variants in TGFBR1 or TGFBR2. Beta adrenergic-blocking agents are recommended to reduce aortic dilation. Losartan was added as an alternative to beta adrenergic-blocking agents in FTAAD after studies showed its efficacy in children and young adults with MFS who were randomly assigned to losartan or atenolol. Penetrance: A study of 31 individuals with PRKG1 pathogenic variants indicated that 63% presented with an aortic dissection and 37% had aortic root enlargement. The cumulative risk of an aortic dissection or repair of an aortic aneurysm by age 55 has been estimated as 86% (95% CI: 70-95%). Sources: ClinGen; to: Assessed as 'strong actionability' in paediatric patients by ClinGen. FTAAD is a rare genetic vascular disease characterized by the familial occurrence of thoracic aortic aneurysm, dissection, or dilatation affecting one or more aortic segments (aortic root, ascending aorta, arch, or descending aorta). Variable age of clinical presentation. Prophylactic surgical repair of the aorta is recommended at 4.5-5.0 cm for patients with pathogenic variants in MYH11, SMAD3, and ACTA2 and at 4.0-4.5 cm for patients with pathogenic variants in TGFBR1 or TGFBR2. Beta adrenergic-blocking agents are recommended to reduce aortic dilation. Losartan was added as an alternative to beta adrenergic-blocking agents in FTAAD after studies showed its efficacy in children and young adults with MFS who were randomly assigned to losartan or atenolol. Penetrance: A study of 31 individuals with PRKG1 pathogenic variants indicated that 63% presented with an aortic dissection and 37% had aortic root enlargement. The cumulative risk of an aortic dissection or repair of an aortic aneurysm by age 55 has been estimated as 86% (95% CI: 70-95%). Discussed with a paediatric cardiologist: variable penetrance and age of onset, does not fulfil criteria for gNBS. Sources: ClinGen |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.2130 | MYH11 |
Zornitza Stark changed review comment from: Assessed as 'strong actionability' in paediatric patients by ClinGen. FTAAD is a rare genetic vascular disease characterized by the familial occurrence of thoracic aortic aneurysm, dissection, or dilatation affecting one or more aortic segments (aortic root, ascending aorta, arch, or descending aorta). Variable age of clinical presentation. Prophylactic surgical repair of the aorta is recommended at 4.5-5.0 cm for patients with pathogenic variants in MYH11, SMAD3, and ACTA2 and at 4.0-4.5 cm for patients with pathogenic variants in TGFBR1 or TGFBR2. Beta adrenergic-blocking agents are recommended to reduce aortic dilation. Losartan was added as an alternative to beta adrenergic-blocking agents in FTAAD after studies showed its efficacy in children and young adults with MFS who were randomly assigned to losartan or atenolol. Penetrance: A study of 12 individuals with MYH11 pathogenic variants indicated that 34% had an aortic dissection and one individual (8%) underwent prophylactic aortic aneurysm repair.; to: Assessed as 'strong actionability' in paediatric patients by ClinGen. FTAAD is a rare genetic vascular disease characterized by the familial occurrence of thoracic aortic aneurysm, dissection, or dilatation affecting one or more aortic segments (aortic root, ascending aorta, arch, or descending aorta). Variable age of clinical presentation. Prophylactic surgical repair of the aorta is recommended at 4.5-5.0 cm for patients with pathogenic variants in MYH11, SMAD3, and ACTA2 and at 4.0-4.5 cm for patients with pathogenic variants in TGFBR1 or TGFBR2. Beta adrenergic-blocking agents are recommended to reduce aortic dilation. Losartan was added as an alternative to beta adrenergic-blocking agents in FTAAD after studies showed its efficacy in children and young adults with MFS who were randomly assigned to losartan or atenolol. Penetrance: A study of 12 individuals with MYH11 pathogenic variants indicated that 34% had an aortic dissection and one individual (8%) underwent prophylactic aortic aneurysm repair. Reviewed with a paediatric cardiologist: variable penetrance and age of onset, does not meet criteria for gNBS. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.2129 | LOX |
Zornitza Stark changed review comment from: Assessed as 'strong actionability' in paediatric patients by ClinGen. FTAAD is a rare genetic vascular disease characterized by the familial occurrence of thoracic aortic aneurysm, dissection, or dilatation affecting one or more aortic segments (aortic root, ascending aorta, arch, or descending aorta). Variable age of clinical presentation. Prophylactic surgical repair of the aorta is recommended at 4.5-5.0 cm for patients with pathogenic variants in MYH11, SMAD3, and ACTA2 and at 4.0-4.5 cm for patients with pathogenic variants in TGFBR1 or TGFBR2. Beta adrenergic-blocking agents are recommended to reduce aortic dilation. Losartan was added as an alternative to beta adrenergic-blocking agents in FTAAD after studies showed its efficacy in children and young adults with MFS who were randomly assigned to losartan or atenolol. Penetrance: A study of 15 individuals with LOX pathogenic variants indicated that 73% had aortic aneurysms and 1 individual (7%) had an aortic dissection. Sources: ClinGen; to: Assessed as 'strong actionability' in paediatric patients by ClinGen. FTAAD is a rare genetic vascular disease characterized by the familial occurrence of thoracic aortic aneurysm, dissection, or dilatation affecting one or more aortic segments (aortic root, ascending aorta, arch, or descending aorta). Variable age of clinical presentation. Prophylactic surgical repair of the aorta is recommended at 4.5-5.0 cm for patients with pathogenic variants in MYH11, SMAD3, and ACTA2 and at 4.0-4.5 cm for patients with pathogenic variants in TGFBR1 or TGFBR2. Beta adrenergic-blocking agents are recommended to reduce aortic dilation. Losartan was added as an alternative to beta adrenergic-blocking agents in FTAAD after studies showed its efficacy in children and young adults with MFS who were randomly assigned to losartan or atenolol. Penetrance: A study of 15 individuals with LOX pathogenic variants indicated that 73% had aortic aneurysms and 1 individual (7%) had an aortic dissection. Discussed with paediatric cardiologist: variable penetrance and age of onset, does not fit with criteria for gNBS. Sources: ClinGen |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.2128 | JUP |
Zornitza Stark changed review comment from: Screen for bi-allelic disease as can be earlier onset, more severe.; to: Discussed potentially just screening for bi-allelic disease as can be earlier onset, more severe. Discussed further with a paediatric cardiologist: variable age of onset and penetrance, therefore does not meet criteria. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.2127 | DSP |
Zornitza Stark changed review comment from: Screen for bi-allelic disease as can be more severe, earlier onset.; to: Discussed screening for bi-allelic disease as can be more severe, earlier onset. Also discussed with paediatric cardiologist: variable age of onset and penetrance, exclude. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.2126 | CASQ2 |
Zornitza Stark changed review comment from: Well established gene-disease association. ClinGen: 'strong actionability' both for adult and paediatric patients. Treatment: beta blockers first line; ICD. There are also numerous known arrhythmia triggers which can be avoided. The mean age of onset of symptoms (usually a syncopal episode) of CPVT is between age seven and twelve years; onset as late as the fourth decade of life has been reported. Nearly 60% of patients have at least one syncopal episode before age 40. If untreated, CPVT is highly lethal, as approximately 30% of genetically affected individuals experience at least one cardiac arrest and up to 80% one or more syncopal spells. In untreated patients, the 8-year fatal or near-fatal event rates of 25% have been reported. Sudden death may be the first manifestation of the disease. ; to: Well established gene-disease association. ClinGen: 'strong actionability' both for adult and paediatric patients. Treatment: beta blockers first line; ICD. There are also numerous known arrhythmia triggers which can be avoided. The mean age of onset of symptoms (usually a syncopal episode) of CPVT is between age seven and twelve years; onset as late as the fourth decade of life has been reported. Nearly 60% of patients have at least one syncopal episode before age 40. If untreated, CPVT is highly lethal, as approximately 30% of genetically affected individuals experience at least one cardiac arrest and up to 80% one or more syncopal spells. In untreated patients, the 8-year fatal or near-fatal event rates of 25% have been reported. Sudden death may be the first manifestation of the disease. Reviewed with paediatric cardiologist: variable penetrance and age of onset. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.2124 | CALM3 |
Zornitza Stark changed review comment from: Rated as 'strong actionability' for paediatric patients by ClinGen. The mean age of onset of symptoms (usually a syncopal episode) of CPVT is between age seven and twelve years; onset as late as the fourth decade of life has been reported. Nearly 60% of patients have at least one syncopal episode before age 40. If untreated, CPVT is highly lethal, as approximately 30% of genetically affected individuals experience at least one cardiac arrest and up to 80% one or more syncopal spells. In untreated patients, the 8-year fatal or near-fatal event rates of 25% have been reported. Sudden death may be the first manifestation of the disease. Instances of sudden infant death syndrome (SIDS) have been associated with pathogenic variants in RYR2. Individuals with pathogenic variants in CALM1, CALM2 or CALM3 can have a severe phenotype, with earlier onset, QT prolongation, and a high predilection for cardiac arrest and sudden death. Beta-blockers lacking intrinsic sympathomimetic activity are recommended as a first-line therapy in all patients with a clinical diagnosis of CPVT, including those with documented spontaneous, stress-induced VAs. Guidelines differ in their recommendations about utilizing beta-blocker therapy in phenotype negative individuals. Treatment with beta blockers is associated with a reduction in adverse cardiac events. However, variability in outcome with beta-blocker therapy is due to multiple factors, including dosing and compliance. In a study of 101 patients with CPVT (22 diagnosed clinically and 79 diagnosed molecularly), 81 were administered beta-blockers (57 symptomatic and 24 asymptomatic individuals). Estimated 4- and 8-year cardiac event rates were 8% and 27%, respectively in patients taking beta-blockers, and 33% and 58% in those not taking beta blockers (log-rank p=0.01). Corresponding statistics for fatal events were 1% and 11% with beta-blockers vs. 18% and 25% without (log-rank p=0.05). Event rates in asymptomatic patients with a positive genotype were similar to other patients. In multivariate models, absence of beta-blockers was an independent predictor of cardiac events (hazard ratio [HR], 5.48; 95% CI, 1.8 to 16.7, p=0.003) and of fatal events (HR, 5.54; 95% CI, 1.2 to 26.1, p=0.03). Of the 37 asymptomatic patients with a positive genotype, 9 (24%) had cardiac events. In patients with CPVT and recurrent sustained VT or syncope, while receiving adequate or maximally tolerated beta blocker, treatment intensification with either combination medication therapy (e.g., beta blocker with flecainide), left cardiac sympathetic denervation, and/or an ICD is recommended. Clinical penetrance ranges from 25 to 100%, with an average of 70 to 80%. Syncope appears to be the first symptom in more than half of the patients. When untreated, mortality from CPVT is high, reaching 30 to 50% by the age of 30 years. For review: age of onset and penetrance. Sources: ClinGen; to: Rated as 'strong actionability' for paediatric patients by ClinGen. The mean age of onset of symptoms (usually a syncopal episode) of CPVT is between age seven and twelve years; onset as late as the fourth decade of life has been reported. Nearly 60% of patients have at least one syncopal episode before age 40. If untreated, CPVT is highly lethal, as approximately 30% of genetically affected individuals experience at least one cardiac arrest and up to 80% one or more syncopal spells. In untreated patients, the 8-year fatal or near-fatal event rates of 25% have been reported. Sudden death may be the first manifestation of the disease. Instances of sudden infant death syndrome (SIDS) have been associated with pathogenic variants in RYR2. Individuals with pathogenic variants in CALM1, CALM2 or CALM3 can have a severe phenotype, with earlier onset, QT prolongation, and a high predilection for cardiac arrest and sudden death. Beta-blockers lacking intrinsic sympathomimetic activity are recommended as a first-line therapy in all patients with a clinical diagnosis of CPVT, including those with documented spontaneous, stress-induced VAs. Guidelines differ in their recommendations about utilizing beta-blocker therapy in phenotype negative individuals. Treatment with beta blockers is associated with a reduction in adverse cardiac events. However, variability in outcome with beta-blocker therapy is due to multiple factors, including dosing and compliance. In a study of 101 patients with CPVT (22 diagnosed clinically and 79 diagnosed molecularly), 81 were administered beta-blockers (57 symptomatic and 24 asymptomatic individuals). Estimated 4- and 8-year cardiac event rates were 8% and 27%, respectively in patients taking beta-blockers, and 33% and 58% in those not taking beta blockers (log-rank p=0.01). Corresponding statistics for fatal events were 1% and 11% with beta-blockers vs. 18% and 25% without (log-rank p=0.05). Event rates in asymptomatic patients with a positive genotype were similar to other patients. In multivariate models, absence of beta-blockers was an independent predictor of cardiac events (hazard ratio [HR], 5.48; 95% CI, 1.8 to 16.7, p=0.003) and of fatal events (HR, 5.54; 95% CI, 1.2 to 26.1, p=0.03). Of the 37 asymptomatic patients with a positive genotype, 9 (24%) had cardiac events. In patients with CPVT and recurrent sustained VT or syncope, while receiving adequate or maximally tolerated beta blocker, treatment intensification with either combination medication therapy (e.g., beta blocker with flecainide), left cardiac sympathetic denervation, and/or an ICD is recommended. Clinical penetrance ranges from 25 to 100%, with an average of 70 to 80%. Syncope appears to be the first symptom in more than half of the patients. When untreated, mortality from CPVT is high, reaching 30 to 50% by the age of 30 years. Exclude for CPVT: association has moderate evidence, there are issues with penetrance, and treatment is generally only recommended in symptomatic individuals. Sources: ClinGen |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.2123 | CALM2 |
Zornitza Stark changed review comment from: Rated as 'strong actionability' for paediatric patients by ClinGen. The mean age of onset of symptoms (usually a syncopal episode) of CPVT is between age seven and twelve years; onset as late as the fourth decade of life has been reported. Nearly 60% of patients have at least one syncopal episode before age 40. If untreated, CPVT is highly lethal, as approximately 30% of genetically affected individuals experience at least one cardiac arrest and up to 80% one or more syncopal spells. In untreated patients, the 8-year fatal or near-fatal event rates of 25% have been reported. Sudden death may be the first manifestation of the disease. Instances of sudden infant death syndrome (SIDS) have been associated with pathogenic variants in RYR2. Individuals with pathogenic variants in CALM1, CALM2 or CALM3 can have a severe phenotype, with earlier onset, QT prolongation, and a high predilection for cardiac arrest and sudden death. Beta-blockers lacking intrinsic sympathomimetic activity are recommended as a first-line therapy in all patients with a clinical diagnosis of CPVT, including those with documented spontaneous, stress-induced VAs. Guidelines differ in their recommendations about utilizing beta-blocker therapy in phenotype negative individuals. Treatment with beta blockers is associated with a reduction in adverse cardiac events. However, variability in outcome with beta-blocker therapy is due to multiple factors, including dosing and compliance. In a study of 101 patients with CPVT (22 diagnosed clinically and 79 diagnosed molecularly), 81 were administered beta-blockers (57 symptomatic and 24 asymptomatic individuals). Estimated 4- and 8-year cardiac event rates were 8% and 27%, respectively in patients taking beta-blockers, and 33% and 58% in those not taking beta blockers (log-rank p=0.01). Corresponding statistics for fatal events were 1% and 11% with beta-blockers vs. 18% and 25% without (log-rank p=0.05). Event rates in asymptomatic patients with a positive genotype were similar to other patients. In multivariate models, absence of beta-blockers was an independent predictor of cardiac events (hazard ratio [HR], 5.48; 95% CI, 1.8 to 16.7, p=0.003) and of fatal events (HR, 5.54; 95% CI, 1.2 to 26.1, p=0.03). Of the 37 asymptomatic patients with a positive genotype, 9 (24%) had cardiac events. In patients with CPVT and recurrent sustained VT or syncope, while receiving adequate or maximally tolerated beta blocker, treatment intensification with either combination medication therapy (e.g., beta blocker with flecainide), left cardiac sympathetic denervation, and/or an ICD is recommended. Clinical penetrance ranges from 25 to 100%, with an average of 70 to 80%. Syncope appears to be the first symptom in more than half of the patients. When untreated, mortality from CPVT is high, reaching 30 to 50% by the age of 30 years. For review: age of onset and penetrance. Sources: ClinGen; to: Rated as 'strong actionability' for paediatric patients by ClinGen. The mean age of onset of symptoms (usually a syncopal episode) of CPVT is between age seven and twelve years; onset as late as the fourth decade of life has been reported. Nearly 60% of patients have at least one syncopal episode before age 40. If untreated, CPVT is highly lethal, as approximately 30% of genetically affected individuals experience at least one cardiac arrest and up to 80% one or more syncopal spells. In untreated patients, the 8-year fatal or near-fatal event rates of 25% have been reported. Sudden death may be the first manifestation of the disease. Instances of sudden infant death syndrome (SIDS) have been associated with pathogenic variants in RYR2. Individuals with pathogenic variants in CALM1, CALM2 or CALM3 can have a severe phenotype, with earlier onset, QT prolongation, and a high predilection for cardiac arrest and sudden death. Beta-blockers lacking intrinsic sympathomimetic activity are recommended as a first-line therapy in all patients with a clinical diagnosis of CPVT, including those with documented spontaneous, stress-induced VAs. Guidelines differ in their recommendations about utilizing beta-blocker therapy in phenotype negative individuals. Treatment with beta blockers is associated with a reduction in adverse cardiac events. However, variability in outcome with beta-blocker therapy is due to multiple factors, including dosing and compliance. In a study of 101 patients with CPVT (22 diagnosed clinically and 79 diagnosed molecularly), 81 were administered beta-blockers (57 symptomatic and 24 asymptomatic individuals). Estimated 4- and 8-year cardiac event rates were 8% and 27%, respectively in patients taking beta-blockers, and 33% and 58% in those not taking beta blockers (log-rank p=0.01). Corresponding statistics for fatal events were 1% and 11% with beta-blockers vs. 18% and 25% without (log-rank p=0.05). Event rates in asymptomatic patients with a positive genotype were similar to other patients. In multivariate models, absence of beta-blockers was an independent predictor of cardiac events (hazard ratio [HR], 5.48; 95% CI, 1.8 to 16.7, p=0.003) and of fatal events (HR, 5.54; 95% CI, 1.2 to 26.1, p=0.03). Of the 37 asymptomatic patients with a positive genotype, 9 (24%) had cardiac events. In patients with CPVT and recurrent sustained VT or syncope, while receiving adequate or maximally tolerated beta blocker, treatment intensification with either combination medication therapy (e.g., beta blocker with flecainide), left cardiac sympathetic denervation, and/or an ICD is recommended. Clinical penetrance ranges from 25 to 100%, with an average of 70 to 80%. Syncope appears to be the first symptom in more than half of the patients. When untreated, mortality from CPVT is high, reaching 30 to 50% by the age of 30 years. Reviewed with paediatric cardiologist: not for inclusion due to issues with penetrance, plus guidelines only generally recommend treatment is symptomatic individuals. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.2123 | CALM1 |
Zornitza Stark changed review comment from: Rated as 'strong actionability' for paediatric patients by ClinGen. The mean age of onset of symptoms (usually a syncopal episode) of CPVT is between age seven and twelve years; onset as late as the fourth decade of life has been reported. Nearly 60% of patients have at least one syncopal episode before age 40. If untreated, CPVT is highly lethal, as approximately 30% of genetically affected individuals experience at least one cardiac arrest and up to 80% one or more syncopal spells. In untreated patients, the 8-year fatal or near-fatal event rates of 25% have been reported. Sudden death may be the first manifestation of the disease. Instances of sudden infant death syndrome (SIDS) have been associated with pathogenic variants in RYR2. Individuals with pathogenic variants in CALM1, CALM2 or CALM3 can have a severe phenotype, with earlier onset, QT prolongation, and a high predilection for cardiac arrest and sudden death. Beta-blockers lacking intrinsic sympathomimetic activity are recommended as a first-line therapy in all patients with a clinical diagnosis of CPVT, including those with documented spontaneous, stress-induced VAs. Guidelines differ in their recommendations about utilizing beta-blocker therapy in phenotype negative individuals. Treatment with beta blockers is associated with a reduction in adverse cardiac events. However, variability in outcome with beta-blocker therapy is due to multiple factors, including dosing and compliance. In a study of 101 patients with CPVT (22 diagnosed clinically and 79 diagnosed molecularly), 81 were administered beta-blockers (57 symptomatic and 24 asymptomatic individuals). Estimated 4- and 8-year cardiac event rates were 8% and 27%, respectively in patients taking beta-blockers, and 33% and 58% in those not taking beta blockers (log-rank p=0.01). Corresponding statistics for fatal events were 1% and 11% with beta-blockers vs. 18% and 25% without (log-rank p=0.05). Event rates in asymptomatic patients with a positive genotype were similar to other patients. In multivariate models, absence of beta-blockers was an independent predictor of cardiac events (hazard ratio [HR], 5.48; 95% CI, 1.8 to 16.7, p=0.003) and of fatal events (HR, 5.54; 95% CI, 1.2 to 26.1, p=0.03). Of the 37 asymptomatic patients with a positive genotype, 9 (24%) had cardiac events. In patients with CPVT and recurrent sustained VT or syncope, while receiving adequate or maximally tolerated beta blocker, treatment intensification with either combination medication therapy (e.g., beta blocker with flecainide), left cardiac sympathetic denervation, and/or an ICD is recommended. Clinical penetrance ranges from 25 to 100%, with an average of 70 to 80%. Syncope appears to be the first symptom in more than half of the patients. When untreated, mortality from CPVT is high, reaching 30 to 50% by the age of 30 years. For review: age of onset and penetrance. Sources: ClinGen; to: Rated as 'strong actionability' for paediatric patients by ClinGen. The mean age of onset of symptoms (usually a syncopal episode) of CPVT is between age seven and twelve years; onset as late as the fourth decade of life has been reported. Nearly 60% of patients have at least one syncopal episode before age 40. If untreated, CPVT is highly lethal, as approximately 30% of genetically affected individuals experience at least one cardiac arrest and up to 80% one or more syncopal spells. In untreated patients, the 8-year fatal or near-fatal event rates of 25% have been reported. Sudden death may be the first manifestation of the disease. Instances of sudden infant death syndrome (SIDS) have been associated with pathogenic variants in RYR2. Individuals with pathogenic variants in CALM1, CALM2 or CALM3 can have a severe phenotype, with earlier onset, QT prolongation, and a high predilection for cardiac arrest and sudden death. Beta-blockers lacking intrinsic sympathomimetic activity are recommended as a first-line therapy in all patients with a clinical diagnosis of CPVT, including those with documented spontaneous, stress-induced VAs. Guidelines differ in their recommendations about utilizing beta-blocker therapy in phenotype negative individuals. Treatment with beta blockers is associated with a reduction in adverse cardiac events. However, variability in outcome with beta-blocker therapy is due to multiple factors, including dosing and compliance. In a study of 101 patients with CPVT (22 diagnosed clinically and 79 diagnosed molecularly), 81 were administered beta-blockers (57 symptomatic and 24 asymptomatic individuals). Estimated 4- and 8-year cardiac event rates were 8% and 27%, respectively in patients taking beta-blockers, and 33% and 58% in those not taking beta blockers (log-rank p=0.01). Corresponding statistics for fatal events were 1% and 11% with beta-blockers vs. 18% and 25% without (log-rank p=0.05). Event rates in asymptomatic patients with a positive genotype were similar to other patients. In multivariate models, absence of beta-blockers was an independent predictor of cardiac events (hazard ratio [HR], 5.48; 95% CI, 1.8 to 16.7, p=0.003) and of fatal events (HR, 5.54; 95% CI, 1.2 to 26.1, p=0.03). Of the 37 asymptomatic patients with a positive genotype, 9 (24%) had cardiac events. In patients with CPVT and recurrent sustained VT or syncope, while receiving adequate or maximally tolerated beta blocker, treatment intensification with either combination medication therapy (e.g., beta blocker with flecainide), left cardiac sympathetic denervation, and/or an ICD is recommended. Clinical penetrance ranges from 25 to 100%, with an average of 70 to 80%. Syncope appears to be the first symptom in more than half of the patients. When untreated, mortality from CPVT is high, reaching 30 to 50% by the age of 30 years. Reviewed with paediatric cardiologist: not for inclusion due to issues with penetrance, plus guidelines only generally recommend treatment is symptomatic individuals. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.2063 | STK4 |
Lilian Downie gene: STK4 was added gene: STK4 was added to Baby Screen+ newborn screening. Sources: Expert list Mode of inheritance for gene: STK4 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: STK4 were set to PMID: 22294732 Phenotypes for gene: STK4 were set to T-cell immunodeficiency, recurrent infections, autoimmunity, and cardiac malformations MIM#614868 Review for gene: STK4 was set to GREEN Added comment: primary T-cell immunodeficiency syndrome characterized by progressive loss of naive T cells, recurrent bacterial, viral, and fungal infections, warts, and abscesses, autoimmune manifestations, and cardiac malformations, including atrial septal defect Rx bone marrow transplant Sources: Expert list |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.2063 | TF |
Lilian Downie gene: TF was added gene: TF was added to Baby Screen+ newborn screening. Sources: Expert list Mode of inheritance for gene: TF was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: TF were set to PMID: 32028041, PMID: 19579082, PMID: 11110675 Phenotypes for gene: TF were set to Atransferrinemia MIM#209300 Review for gene: TF was set to GREEN Added comment: Hypochromic microcytic anaemia from absent transferrin - presents in infancy Rx Red cell transfusions, deferoxamine Sources: Expert list |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.1977 | HSD11B2 |
Zornitza Stark gene: HSD11B2 was added gene: HSD11B2 was added to Baby Screen+ newborn screening. Sources: Expert list treatable, endocrine tags were added to gene: HSD11B2. Mode of inheritance for gene: HSD11B2 was set to BIALLELIC, autosomal or pseudoautosomal Phenotypes for gene: HSD11B2 were set to Apparent mineralocorticoid excess, MIM# 218030; MONDO:0009025 Review for gene: HSD11B2 was set to GREEN Added comment: Apparent mineralocorticoid excess (AME) is an autosomal recessive form of low-renin hypertension associated with low aldosterone, metabolic alkalosis, hypernatremia, and hypokalemia. The disorder is due to a congenital defect in 11-beta-hydroxysteroid dehydrogenase type II (HSD11B2) activity, resulting in decreased conversion of biologically active cortisol to inactive cortisone; this defect allows cortisol to act as a ligand for the mineralocorticoid receptor, resulting in sodium retention and volume expansion. There is a favorable therapeutic response to spironolactone. More than 10 unrelated families reported. Onset is usually in infancy or early childhood. Non-genetic confirmatory testing: aldosterone, renin, potassium levels Sources: Expert list |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.1868 | NKX2-5 | Zornitza Stark Phenotypes for gene: NKX2-5 were changed from Congenital heart disease to Atrial septal defect 7, with or without AV conduction defects, MIM# 108900 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.1865 | TANGO2 |
Ari Horton changed review comment from: Folate may assist with TANGO2 DOI: https://doi.org/10.21203/rs.3.rs-1778084/v1 While chronic symptoms are predominantly neurodevelopmental, metabolic stressors such as fasting, dehydration, illness, and excessive heat can trigger episodic metabolic crises characterized by encephalopathy, ataxia, muscle weakness, rhabdomyolysis, and hypoglycemia. During these events, patients can develop acute life-threatening cardiac arrhythmias. Arrhythmias typically initiate with isolated premature ventricular contractions (PVC) followed by recalcitrant ventricular tachycardia. Because these lethal arrhythmias usually do not respond to standard antiarrhythmic therapies, cardiac arrhythmias are the leading cause of death in TDD Fasting and feeding recommendations to reduce crises and improve cardiac status and neurodev outcomes, reduce risk of cardiac arrhythmias and SCDY Natural history study (ClinicalTrials.gov Identifier: NCT05374616) strongly suggests that subjects on a multivitamin or a Bcomplex vitamin supplement have a greatly reduced risk for metabolic crises and cardiac arrhythmias Specific diet and fasting plans are recommended for all patients from the neonatal period Sources: Expert Review; to: Folate may assist with TANGO2 DOI: https://doi.org/10.21203/rs.3.rs-1778084/v1 PMID: 35568137 While chronic symptoms are predominantly neurodevelopmental, metabolic stressors such as fasting, dehydration, illness, and excessive heat can trigger episodic metabolic crises characterized by encephalopathy, ataxia, muscle weakness, rhabdomyolysis, and hypoglycemia. During these events, patients can develop acute life-threatening cardiac arrhythmias. Arrhythmias typically initiate with isolated premature ventricular contractions (PVC) followed by recalcitrant ventricular tachycardia. Because these lethal arrhythmias usually do not respond to standard antiarrhythmic therapies, cardiac arrhythmias are the leading cause of death in TDD Fasting and feeding recommendations to reduce crises and improve cardiac status and neurodev outcomes, reduce risk of cardiac arrhythmias and SCDY Natural history study (ClinicalTrials.gov Identifier: NCT05374616) strongly suggests that subjects on a multivitamin or a Bcomplex vitamin supplement have a greatly reduced risk for metabolic crises and cardiac arrhythmias Twenty-seven children were admitted for 43 cardiac crises (median age 6.4 years; interquartile range [IQR] 2.4–9.8 years) at 14 centers. During crisis, QTc prolongation occurred in all (median 547 ms; IQR 504–600 ms) and a type I Brugada pattern in 8 (26%). Arrhythmias included VT in 21 (78%), supraventricular tachycardia in 3 (11%), and heart block in 1 (4%). Nineteen patients (70%) developed cardiomyopathy, and 20 (74%) experienced a cardiac arrest. There were 10 deaths (37%), 6 related to arrhythmias. In 5 patients, recalcitrant VT occurred despite use of antiarrhythmic drugs. In 6 patients, arrhythmias were controlled after extracorporeal membrane oxygenation (ECMO) support; 5 of these patients survived. Among 10 patients who survived VT without ECMO, successful treatment included intravenous magnesium, isoproterenol, and atrial pacing in multiple cases and verapamil in 1 patient. Initiation of feeds seemed to decrease VT events. Specific diet and fasting plans are recommended for all patients from the neonatal period Sources: Expert Review |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.1849 | TMEM43 |
Zornitza Stark changed review comment from: Rated as 'strong actionability' in paediatric patients by ClinGen together with other ARVC genes. ARVC is a progressive heart disease characterized by degeneration of cardiac myocytes and their subsequent replacement by fat and fibrous tissue primarily in the right ventricle, though the left ventricle may also be affected. It is associated with an increased risk of ventricular arrhythmia (VA) and sudden cardiac death (SCD) in young individuals and athletes. The VA is usually in proportion to the degree of ventricular remodeling and dysfunction, and electrical instability. The mechanism of SCD is cardiac arrest due to sustained ventricular tachycardia (VT) or ventricular fibrillation (VF). Age of onset is highly variable with a mean age of diagnosis of 31 years and a range of 4 to 64 years. Antiarrhythmic drugs and beta-blockers are not recommended in healthy gene carriers. In patients with ARVC and ventricular arrhythmia (VA), a beta-blocker or other antiarrhythmic is recommended. Recommendations for ICD placement in patients with ARVC differ across guidelines, both in terms of the indications for placement and whether recommendations are based on evidence or expert opinion. Recommendations based on non-randomized studies support ICD placement in patients with ARVC and an additional marker of increased risk of SCD (resuscitated SCA, sustained VT hemodynamically tolerated, and significant ventricular dysfunction with RVEF or LVEF ≤35%) and in patients with ARVC and syncope presumed to be due to VA if meaningful survival greater than 1 year is expected. The presence of a combination of other risk factors (e.g., male sex, frequent PVCs, syncope) may also be used to indicate implantation. Serial screening for the emergence of cardiomyopathy is recommended for clinically unaffected individuals who carry a variant associated with ARVC, including: • Medical history, with special attention to heart failure symptoms, arrhythmias, presyncope or syncope, and thromboembolism • Physical examination with special attention to cardiac and neuromuscular systems and examination of the integumentary system if ARVC is suspected • Electrocardiography • Cardiovascular imaging. Penetrance: In a study of 264 probands with genetic variants associated with ARVC who presented alive, 73% had sustained VA, 13% had symptomatic HF, and 5% had cardiac death (2% SCD, 2% HF, and 1% HF with VA) during median 8-year follow-up. Among 385 family members of the probands who also carried an ARVC variant, 32% met clinical criteria for ARVC, 11% experienced sustained VA, and 2% died during follow-up (1% from SCD, 0.5% from HF, and 0.5% non-cardiac issues). In a second study of 220 probands with genetic variants associated with ARVC who presented alive, 54% presented with sustained VT. In 321 family members of the probands who also carried an ARVC variant, 14% were symptomatic at presentation but 8% experienced VA during a mean 4-year follow-up. For all 541 cases, 60% met clinical criteria for ARVC, 30% had sustained VA, 14% developed ventricular dysfunction, 5% experienced HF, 4% had a resuscitated SCD/VF, and 2% died over a mean follow-up of 6 years.; to: Rated as 'strong actionability' in paediatric patients by ClinGen together with other ARVC genes. ARVC is a progressive heart disease characterized by degeneration of cardiac myocytes and their subsequent replacement by fat and fibrous tissue primarily in the right ventricle, though the left ventricle may also be affected. It is associated with an increased risk of ventricular arrhythmia (VA) and sudden cardiac death (SCD) in young individuals and athletes. The VA is usually in proportion to the degree of ventricular remodeling and dysfunction, and electrical instability. The mechanism of SCD is cardiac arrest due to sustained ventricular tachycardia (VT) or ventricular fibrillation (VF). Age of onset is highly variable with a mean age of diagnosis of 31 years and a range of 4 to 64 years. Antiarrhythmic drugs and beta-blockers are not recommended in healthy gene carriers. In patients with ARVC and ventricular arrhythmia (VA), a beta-blocker or other antiarrhythmic is recommended. Recommendations for ICD placement in patients with ARVC differ across guidelines, both in terms of the indications for placement and whether recommendations are based on evidence or expert opinion. Recommendations based on non-randomized studies support ICD placement in patients with ARVC and an additional marker of increased risk of SCD (resuscitated SCA, sustained VT hemodynamically tolerated, and significant ventricular dysfunction with RVEF or LVEF ≤35%) and in patients with ARVC and syncope presumed to be due to VA if meaningful survival greater than 1 year is expected. The presence of a combination of other risk factors (e.g., male sex, frequent PVCs, syncope) may also be used to indicate implantation. Serial screening for the emergence of cardiomyopathy is recommended for clinically unaffected individuals who carry a variant associated with ARVC, including: • Medical history, with special attention to heart failure symptoms, arrhythmias, presyncope or syncope, and thromboembolism • Physical examination with special attention to cardiac and neuromuscular systems and examination of the integumentary system if ARVC is suspected • Electrocardiography • Cardiovascular imaging. Penetrance: In a study of 264 probands with genetic variants associated with ARVC who presented alive, 73% had sustained VA, 13% had symptomatic HF, and 5% had cardiac death (2% SCD, 2% HF, and 1% HF with VA) during median 8-year follow-up. Among 385 family members of the probands who also carried an ARVC variant, 32% met clinical criteria for ARVC, 11% experienced sustained VA, and 2% died during follow-up (1% from SCD, 0.5% from HF, and 0.5% non-cardiac issues). In a second study of 220 probands with genetic variants associated with ARVC who presented alive, 54% presented with sustained VT. In 321 family members of the probands who also carried an ARVC variant, 14% were symptomatic at presentation but 8% experienced VA during a mean 4-year follow-up. For all 541 cases, 60% met clinical criteria for ARVC, 30% had sustained VA, 14% developed ventricular dysfunction, 5% experienced HF, 4% had a resuscitated SCD/VF, and 2% died over a mean follow-up of 6 years. Note founder variant in Newfoundland. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.1845 | CASQ2 |
Zornitza Stark changed review comment from: Well established gene-disease association. ClinGen: 'strong actionability' both for adult and paediatric patients. Treatment: beta blockers first line; ICD. There are also numerous known arrhythmia triggers which can be avoided. The mean age of onset of symptoms (usually a syncopal episode) of CPVT is between age seven and twelve years; onset as late as the fourth decade of life has been reported. Nearly 60% of patients have at least one syncopal episode before age 40. If untreated, CPVT is highly lethal, as approximately 30% of genetically affected individuals experience at least one cardiac arrest and up to 80% one or more syncopal spells. In untreated patients, the 8-year fatal or near-fatal event rates of 25% have been reported. Sudden death may be the first manifestation of the disease. For review.; to: Well established gene-disease association. ClinGen: 'strong actionability' both for adult and paediatric patients. Treatment: beta blockers first line; ICD. There are also numerous known arrhythmia triggers which can be avoided. The mean age of onset of symptoms (usually a syncopal episode) of CPVT is between age seven and twelve years; onset as late as the fourth decade of life has been reported. Nearly 60% of patients have at least one syncopal episode before age 40. If untreated, CPVT is highly lethal, as approximately 30% of genetically affected individuals experience at least one cardiac arrest and up to 80% one or more syncopal spells. In untreated patients, the 8-year fatal or near-fatal event rates of 25% have been reported. Sudden death may be the first manifestation of the disease. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.1841 | CA12 |
Zornitza Stark gene: CA12 was added gene: CA12 was added to gNBS. Sources: Expert Review treatable, metabolic tags were added to gene: CA12. Mode of inheritance for gene: CA12 was set to BIALLELIC, autosomal or pseudoautosomal Phenotypes for gene: CA12 were set to Hyperchlorhidrosis, isolated MIM#143860 Review for gene: CA12 was set to GREEN Added comment: Glu143Lys found in 4 Israeli Bedouin families. 2 other unrelated families reported with 1 missense (LoF demonstrated), 1 splice (aberrant splicing proven) and 1 fs (protein truncating, not NMD). Excessive salt wasting in sweat can result in severe infantile hyponatraemic dehydration and hyperkalaemia. Treatment: sodium chloride supplementation Sources: Expert Review |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.1834 | WT1 |
Zornitza Stark changed review comment from: Rated as 'moderate actionability' in paediatric patients by ClinGen. Individuals with germline WT1 pathogenic variants are more likely to have bilateral or multicentric tumors and to develop tumors at an early age. The median age of diagnosis is between 3 and 4 years and both kidneys are affected in ~5% of children. Significantly more females than males have the bilateral disease. Adult forms are very rare. In the majority of cases, the prognosis is favorable with a survival rate of over 90%. The goal of surveillance in individuals with a genetic predisposition to WT is to detect tumors while they are low-stage and require less treatment compared to advanced-stage tumors. Surveillance is not a one-time event and should continue through the period of risk. WTs can double in size every week, leading to the recommendation that evaluation with abdominal ultrasound be performed every 3-4 months, with and no less frequently than 3 times a year, until age five years. Even at this frequency, occasional tumors may present clinically between scans and families should be made aware of this. However, there is no evidence to suggest that such tumors have a worse outcome. No evidence was found on the effectiveness of surveillance in children with WT due to WT1 pathogenic variants. In addition, there is no clear evidence that surveillance results in a significant decrease in mortality or tumor stage generally. However, tumors detected by surveillance would be anticipated to be on average smaller than tumors that present clinically. There have been three small retrospective evaluations of WT surveillance published, only one of which reported a significant difference in stage distribution between screened and unscreened individuals. This report was a case series of children with Beckwith-Wiedemann syndrome and idiopathic hemihypertropy, where 0/12 screened children with WT had late-stage disease and 25/59 (42%) of unscreened children had late-stage WT (p<0.003). In addition, in Germany, where abdominal ultrasound in children is common and 10% of WT are diagnosed prior to symptoms, there are some data to suggest that asymptomatic tumors are of lower stage than those present due to clinical symptoms. Penetrance is unclear. For review.; to: Rated as 'moderate actionability' in paediatric patients by ClinGen. Individuals with germline WT1 pathogenic variants are more likely to have bilateral or multicentric tumors and to develop tumors at an early age. The median age of diagnosis is between 3 and 4 years and both kidneys are affected in ~5% of children. Significantly more females than males have the bilateral disease. Adult forms are very rare. In the majority of cases, the prognosis is favorable with a survival rate of over 90%. The goal of surveillance in individuals with a genetic predisposition to WT is to detect tumors while they are low-stage and require less treatment compared to advanced-stage tumors. Surveillance is not a one-time event and should continue through the period of risk. WTs can double in size every week, leading to the recommendation that evaluation with abdominal ultrasound be performed every 3-4 months, with and no less frequently than 3 times a year, until age five years. Even at this frequency, occasional tumors may present clinically between scans and families should be made aware of this. However, there is no evidence to suggest that such tumors have a worse outcome. No evidence was found on the effectiveness of surveillance in children with WT due to WT1 pathogenic variants. In addition, there is no clear evidence that surveillance results in a significant decrease in mortality or tumor stage generally. However, tumors detected by surveillance would be anticipated to be on average smaller than tumors that present clinically. There have been three small retrospective evaluations of WT surveillance published, only one of which reported a significant difference in stage distribution between screened and unscreened individuals. This report was a case series of children with Beckwith-Wiedemann syndrome and idiopathic hemihypertropy, where 0/12 screened children with WT had late-stage disease and 25/59 (42%) of unscreened children had late-stage WT (p<0.003). In addition, in Germany, where abdominal ultrasound in children is common and 10% of WT are diagnosed prior to symptoms, there are some data to suggest that asymptomatic tumors are of lower stage than those present due to clinical symptoms. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.1834 | GLA |
Zornitza Stark changed review comment from: Assessed as 'moderate actionability' in paediatric patients by ClinGen. In classic FD, the first symptoms, including chronic neuropathic pain and episodic severe pain crises, emerge during childhood (typically age 3-10 years). Heterozygous females typically have a later median age of onset than males (9-13 years versus 13-23 years). Rarely, females may be relatively asymptomatic and have a normal life span or may have symptoms as severe as males with the classic phenotype. Cardiac and/or cerebrovascular disease is present in most males by middle age while ESRD usually develops during the third to fifth decade. Renal and cardiac failure represent major sources of morbidity, and account for the reduced lifespan among affected males (50-58 years) and females (70-75 years) compared to the normal population. A systematic review of RCTs of ERT reported on nine studies of 351 FD patients; however, many of these studies reported only on the effect of ERT on levels of enzyme substrate. Data from 2 trials (n=39 males) found no statistically significant differences in plasma enzyme substrate and one trial (n=24 males) found no statistical differences in renal function between individuals treated with agalsidase alfa and placebo (up to 6-month follow-up). Similar results were seen for agalsidase beta. One trial of 26 male patients found a statistically significant difference in pain, favoring agalsidase alfa compared to placebo at 5-6 months after treatment. No trial reported on the effect of agalsidase alfa on mortality or cardiac/cerebrovascular disease. One trial of agalsidase beta (n=82 males and females) found no difference in mortality, renal function, or symptoms or complications of cardiac or cerebrovascular disease over 18 months. The long-term influence of ERT on risk of morbidity and mortality related to FD remains to be established. Migalastat, an oral chaperone drug, is recommended as an option for treatment for some patients with FD who are over 16 years with an amenable genetic variant who would usually be offered ERT. For non-amenable genotypes, migalastat may result in a net loss of alpha-Gal A activity, potentially worsening the disease condition. A systematic review evaluated 2 phase III RCTs that both included males and females. One RCT randomized patients to switch from ERT to migalastat (n = 36) or continue with ERT (n = 24) during an 18-month period with a 12-month extension in which all patients received migalastat. During the treatment period, the percentage of patients who had a renal, cardiac, or cerebrovascular event or died was 29% of patients on migalastat compared to 44% of patients on ERT. However, this difference was not statistically significant. A second RCT compared migalastat (n=34) with placebo (n=33) over a 6-month period, with an 18-month extension study. The primary outcome was change from baseline in interstitial capillary inclusions of the enzyme substrate globotriaosylceramide (GL-3), which was not significantly different between groups. Results from both trials indicate that migalastat does not have a significant beneficial effect on pain, health-related quality of life outcomes, or glomerular filtration rate (results were uncertain due to large confidence intervals, small sample sizes, and/or short follow-up time). Migalastat did not influence left ventricular ejection fraction but did improve left ventricular mass over 18 months. There are a number of recommendations for surveillance and agents to avoid (amiodarone). There is no consensus as to when ERT should be started.; to: Assessed as 'moderate actionability' in paediatric patients by ClinGen. In classic FD, the first symptoms, including chronic neuropathic pain and episodic severe pain crises, emerge during childhood (typically age 3-10 years). Heterozygous females typically have a later median age of onset than males (9-13 years versus 13-23 years). Rarely, females may be relatively asymptomatic and have a normal life span or may have symptoms as severe as males with the classic phenotype. Cardiac and/or cerebrovascular disease is present in most males by middle age while ESRD usually develops during the third to fifth decade. Renal and cardiac failure represent major sources of morbidity, and account for the reduced lifespan among affected males (50-58 years) and females (70-75 years) compared to the normal population. A systematic review of RCTs of ERT reported on nine studies of 351 FD patients; however, many of these studies reported only on the effect of ERT on levels of enzyme substrate. Data from 2 trials (n=39 males) found no statistically significant differences in plasma enzyme substrate and one trial (n=24 males) found no statistical differences in renal function between individuals treated with agalsidase alfa and placebo (up to 6-month follow-up). Similar results were seen for agalsidase beta. One trial of 26 male patients found a statistically significant difference in pain, favoring agalsidase alfa compared to placebo at 5-6 months after treatment. No trial reported on the effect of agalsidase alfa on mortality or cardiac/cerebrovascular disease. One trial of agalsidase beta (n=82 males and females) found no difference in mortality, renal function, or symptoms or complications of cardiac or cerebrovascular disease over 18 months. The long-term influence of ERT on risk of morbidity and mortality related to FD remains to be established. Migalastat, an oral chaperone drug, is recommended as an option for treatment for some patients with FD who are over 16 years with an amenable genetic variant who would usually be offered ERT. For non-amenable genotypes, migalastat may result in a net loss of alpha-Gal A activity, potentially worsening the disease condition. A systematic review evaluated 2 phase III RCTs that both included males and females. One RCT randomized patients to switch from ERT to migalastat (n = 36) or continue with ERT (n = 24) during an 18-month period with a 12-month extension in which all patients received migalastat. During the treatment period, the percentage of patients who had a renal, cardiac, or cerebrovascular event or died was 29% of patients on migalastat compared to 44% of patients on ERT. However, this difference was not statistically significant. A second RCT compared migalastat (n=34) with placebo (n=33) over a 6-month period, with an 18-month extension study. The primary outcome was change from baseline in interstitial capillary inclusions of the enzyme substrate globotriaosylceramide (GL-3), which was not significantly different between groups. Results from both trials indicate that migalastat does not have a significant beneficial effect on pain, health-related quality of life outcomes, or glomerular filtration rate (results were uncertain due to large confidence intervals, small sample sizes, and/or short follow-up time). Migalastat did not influence left ventricular ejection fraction but did improve left ventricular mass over 18 months. There are a number of recommendations for surveillance and agents to avoid (amiodarone). There is no consensus as to when ERT should be started. Note ERT is licensed in Australia from age 7 years. However, carbamazepine relieves neuropathic pain, which has onset in early childhood. Overall, include. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.1825 | PMM2 |
Zornitza Stark changed review comment from: Well established gene-disease association. Two clinical presentations - solely neurologic form and a neurologic-multivisceral form Mortality approximately 20% in first 2 years Treatment: epalrestat PMID 31636082: Epalrestat increased PMM2 enzymatic activity in four PMM2-CDG patient fibroblast lines with genotypes R141H/F119L, R141H/E139K, R141H/N216I and R141H/F183S. PMM2 enzyme activity gains ranged from 30% to 400% over baseline, depending on genotype. Pharmacological inhibition of aldose reductase by epalrestat may shunt glucose from the polyol pathway to glucose-1,6-bisphosphate, which is an endogenous stabilizer and coactivator of PMM2 homodimerization. Epalrestat is a safe, oral and brain penetrant drug that was approved 27 years ago in Japan to treat diabetic neuropathy in geriatric populations. For review: uncertain if in use for CDG; to: Well established gene-disease association. Two clinical presentations - solely neurologic form and a neurologic-multivisceral form Mortality approximately 20% in first 2 years Treatment: epalrestat PMID 31636082: Epalrestat increased PMM2 enzymatic activity in four PMM2-CDG patient fibroblast lines with genotypes R141H/F119L, R141H/E139K, R141H/N216I and R141H/F183S. PMM2 enzyme activity gains ranged from 30% to 400% over baseline, depending on genotype. Pharmacological inhibition of aldose reductase by epalrestat may shunt glucose from the polyol pathway to glucose-1,6-bisphosphate, which is an endogenous stabilizer and coactivator of PMM2 homodimerization. Epalrestat is a safe, oral and brain penetrant drug that was approved 27 years ago in Japan to treat diabetic neuropathy in geriatric populations. Treatment not well established in patients. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.1821 | RET |
Zornitza Stark changed review comment from: Established gene-disease associations. Assessed as 'strong actionability' in paediatric patients by ClinGen. Onset of MEN2A is typically prior to age 35, usually between ages 5 and 25. MTC is generally the first manifestation in MEN2A with probands presenting with a neck mass or neck pain. Metastatic spread is common. MTC is the most common cause of death in patients with MEN2A. PHEOs usually present after MTC or concomitantly but are the first manifestation in 13-27% of individuals; they occur in about 50% of individuals. PHEOs are diagnosed at an earlier age, have subtler symptoms, and are more likely to be bilateral than sporadic tumors, with malignant transformation occurring in about 4% of cases. Even without malignant progression, PHEOs can be lethal from intractable hypertension or anesthesia-induced hypertensive crises. Depending on the risk category of the RET pathogenic variant, PHEOs have been observed as early as 5 years of age. For MEN2A children with a “high-risk” pathogenic variant, patients should undergo annual ultrasound and screening for increased calcitonin levels starting at 3 years of age and proceed to thyroidectomy when elevated levels are detected or at 5 years of age. For patients with a “moderate-risk” pathogenic variant, considering the clinical variability of disease expression in family members in this category, annual physical examination, cervical US, and measurement of serum calcitonin levels, should begin at 5 years of age. Biochemical surveillance for PHPT should begin at 11 years and 16 years of age for patients with high- and moderate-risk variants, respectively; this screening is recommended annually for “high-risk” patients and at least every 2-3 years in “moderate-risk” patients. Biochemical screening for PHEO should begin at age 11 for patients with high-risk variants and age 16 for patients with moderate-risk variants. For review: actionable in first 5 years of life?; to: Established gene-disease associations. Assessed as 'strong actionability' in paediatric patients by ClinGen. Onset of MEN2A is typically prior to age 35, usually between ages 5 and 25. MTC is generally the first manifestation in MEN2A with probands presenting with a neck mass or neck pain. Metastatic spread is common. MTC is the most common cause of death in patients with MEN2A. PHEOs usually present after MTC or concomitantly but are the first manifestation in 13-27% of individuals; they occur in about 50% of individuals. PHEOs are diagnosed at an earlier age, have subtler symptoms, and are more likely to be bilateral than sporadic tumors, with malignant transformation occurring in about 4% of cases. Even without malignant progression, PHEOs can be lethal from intractable hypertension or anesthesia-induced hypertensive crises. Depending on the risk category of the RET pathogenic variant, PHEOs have been observed as early as 5 years of age. For MEN2A children with a “high-risk” pathogenic variant, patients should undergo annual ultrasound and screening for increased calcitonin levels starting at 3 years of age and proceed to thyroidectomy when elevated levels are detected or at 5 years of age. For patients with a “moderate-risk” pathogenic variant, considering the clinical variability of disease expression in family members in this category, annual physical examination, cervical US, and measurement of serum calcitonin levels, should begin at 5 years of age. Biochemical surveillance for PHPT should begin at 11 years and 16 years of age for patients with high- and moderate-risk variants, respectively; this screening is recommended annually for “high-risk” patients and at least every 2-3 years in “moderate-risk” patients. Biochemical screening for PHEO should begin at age 11 for patients with high-risk variants and age 16 for patients with moderate-risk variants. For review: some actionability in first 5 years, variants can be stratified in terms of risk. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.1801 | MLH1 |
Zornitza Stark changed review comment from: Note mono-allelic variants are associated with adult-onset cancer risk. MMRCS rated as 'strong actionability' in paediatric patients by ClinGen. The hallmark of MMRCS is early onset cancer, most often in childhood or young adulthood. The median age of onset of the first tumor is 7.5 years, with a wide range observed (0.4-39 years). A large portion (up to 40%) of patients develop metachronous second malignancies. The median survival after diagnosis of the primary tumor is less than 30 months. Prognosis depends on the possibility of complete resection, making early detection paramount. It is unclear what tumor spectrum will emerge among adults with MMRCS. Brain tumors are frequent and often diagnosed in the first decade of life. The rate of progression appears to be rapid in the brain tumors. The median age at diagnosis of brain tumors is 9 years (range, 2-40 years). Brain tumors are by far the most common cause of death. Colonic adenomatous oligopolyposis typically is diagnosed between 5 and 10 years of age. The progression of adenomas to malignancy in MMRCS is the most rapid of any inherited colorectal cancer syndrome. Among MMRCS patients presenting with colorectal cancer (CRC), the median age at diagnosis was 16 years (range, 8-48 years) with more than half of patients classified as pediatric-onset CRC. The age of onset of small-bowel adenomas is later; they typically develop in the second decade of life. The median age at diagnosis of small-bowel cancer was 28 years, with a range of 11-42 years. The lifetime risk of gastrointestinal cancer among MMRCS patients is the highest reported of all gastrointestinal cancer predisposition syndromes as a function of age. The median age at diagnosis of hematologic malignancy is 6.6 years. Endometrial cancer has been diagnosed between 19 and 44 years. The age at diagnosis of urinary tract tumors has ranged from 10 to 22 years. The management of MMRCS is based on the current estimates of neoplasia risk and the early age of onset for the cancers, which have led to tentative guidelines for the management of these patients. The age at which to begin surveillance varies by guideline and is represented below as age ranges. In patients with MMRCS, the following surveillance is suggested: •Screening for CRC by colonoscopy is recommended annually beginning at age 6 to 8 years. Once polyps are identified, colonoscopy every 6 months is recommended. •Annual surveillance for small-bowel cancer by upper endoscopy and video capsule endoscopy is suggested beginning at 8 to 10 years of age. Monitoring of hemoglobin levels every 6 months also is suggested, beginning at 8 years of age. •Surveillance for brain tumors by brain MRI every 6 to 12 months is suggested starting at the time of diagnosis even in the first year of life to age 2 years. •Currently, no proven surveillance modalities for leukemia or lymphoma have been identified. Complete blood count to screen for leukemia is suggested every 6 months beginning at 1 year of age. Clinical examinations and abdominal ultrasounds to screen for lymphoma every 6 months may be considered by the treating physician. •For individuals with a uterus, surveillance for endometrial cancer is suggested by transvaginal ultrasound, pelvic examination, and endometrial sampling annually starting at age 20 years. •Surveillance for cancer of the urinary tract is suggested, with annual urinalysis starting at age 10 to 20 years. •To screen for other types of tumors, whole-body MRI could be considered once a year starting at 6 years of age or when anesthesia is not needed. This method should not replace the need for ultrasound and brain MRI. Estimated penetrance in MMRCS: •50% develop small-bowel adenomas •>90% develop colorectal adenomas •59 to 70% develop colorectal cancer •58 to 70% develop high-grade brain tumours •20-40% develop lymphoma •10-40% develop leukemia •10 to 18% develop small-bowel cancer •<10% develop endometrial cancer •<10% develop urinary tract cancer •<10% develop cancer of other sites; to: Note mono-allelic variants are associated with adult-onset cancer risk. MMRCS rated as 'strong actionability' in paediatric patients by ClinGen. The hallmark of MMRCS is early onset cancer, most often in childhood or young adulthood. The median age of onset of the first tumor is 7.5 years, with a wide range observed (0.4-39 years). A large portion (up to 40%) of patients develop metachronous second malignancies. The median survival after diagnosis of the primary tumor is less than 30 months. Prognosis depends on the possibility of complete resection, making early detection paramount. It is unclear what tumor spectrum will emerge among adults with MMRCS. Brain tumors are frequent and often diagnosed in the first decade of life. The rate of progression appears to be rapid in the brain tumors. The median age at diagnosis of brain tumors is 9 years (range, 2-40 years). Brain tumors are by far the most common cause of death. Colonic adenomatous oligopolyposis typically is diagnosed between 5 and 10 years of age. The progression of adenomas to malignancy in MMRCS is the most rapid of any inherited colorectal cancer syndrome. Among MMRCS patients presenting with colorectal cancer (CRC), the median age at diagnosis was 16 years (range, 8-48 years) with more than half of patients classified as pediatric-onset CRC. The age of onset of small-bowel adenomas is later; they typically develop in the second decade of life. The median age at diagnosis of small-bowel cancer was 28 years, with a range of 11-42 years. The lifetime risk of gastrointestinal cancer among MMRCS patients is the highest reported of all gastrointestinal cancer predisposition syndromes as a function of age. The median age at diagnosis of hematologic malignancy is 6.6 years. Endometrial cancer has been diagnosed between 19 and 44 years. The age at diagnosis of urinary tract tumors has ranged from 10 to 22 years. The management of MMRCS is based on the current estimates of neoplasia risk and the early age of onset for the cancers, which have led to tentative guidelines for the management of these patients. The age at which to begin surveillance varies by guideline and is represented below as age ranges. In patients with MMRCS, the following surveillance is suggested: •Screening for CRC by colonoscopy is recommended annually beginning at age 6 to 8 years. Once polyps are identified, colonoscopy every 6 months is recommended. •Annual surveillance for small-bowel cancer by upper endoscopy and video capsule endoscopy is suggested beginning at 8 to 10 years of age. Monitoring of hemoglobin levels every 6 months also is suggested, beginning at 8 years of age. •Surveillance for brain tumors by brain MRI every 6 to 12 months is suggested starting at the time of diagnosis even in the first year of life to age 2 years. •Currently, no proven surveillance modalities for leukemia or lymphoma have been identified. Complete blood count to screen for leukemia is suggested every 6 months beginning at 1 year of age. Clinical examinations and abdominal ultrasounds to screen for lymphoma every 6 months may be considered by the treating physician. •For individuals with a uterus, surveillance for endometrial cancer is suggested by transvaginal ultrasound, pelvic examination, and endometrial sampling annually starting at age 20 years. •Surveillance for cancer of the urinary tract is suggested, with annual urinalysis starting at age 10 to 20 years. •To screen for other types of tumors, whole-body MRI could be considered once a year starting at 6 years of age or when anesthesia is not needed. This method should not replace the need for ultrasound and brain MRI. Estimated penetrance in MMRCS: •50% develop small-bowel adenomas •>90% develop colorectal adenomas •59 to 70% develop colorectal cancer •58 to 70% develop high-grade brain tumours •20-40% develop lymphoma •10-40% develop leukemia •10 to 18% develop small-bowel cancer •<10% develop endometrial cancer •<10% develop urinary tract cancer •<10% develop cancer of other sites |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.1789 | S1PR2 |
Zornitza Stark gene: S1PR2 was added gene: S1PR2 was added to gNBS. Sources: ClinGen deafness tags were added to gene: S1PR2. Mode of inheritance for gene: S1PR2 was set to BIALLELIC, autosomal or pseudoautosomal Phenotypes for gene: S1PR2 were set to Deafness, autosomal recessive 68, MIM# 610419 Review for gene: S1PR2 was set to GREEN Added comment: Assessed as 'strong actionability' in paediatric patients by ClinGen, onset of deafness is generally pre-lingual, therefore include. Sources: ClinGen |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.1787 | PTPRQ |
Zornitza Stark gene: PTPRQ was added gene: PTPRQ was added to gNBS. Sources: ClinGen deafness tags were added to gene: PTPRQ. Mode of inheritance for gene: PTPRQ was set to BOTH monoallelic and biallelic, autosomal or pseudoautosomal Phenotypes for gene: PTPRQ were set to Deafness, autosomal recessive 84A, MIM# 613391; Deafness, autosomal dominant 73, MIM# 617663 Review for gene: PTPRQ was set to GREEN Added comment: Assessed as 'strong actionability' in paediatric patients by ClinGen, onset of deafness is generally pre-lingual, therefore include. Sources: ClinGen |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.1785 | POU3F4 | Zornitza Stark edited their review of gene: POU3F4: Added comment: Assessed as 'strong actionability' in paediatric patients by ClinGen, onset is generally pre-lingual, therefore include.; Changed rating: GREEN | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.1782 | MYO3A |
Zornitza Stark edited their review of gene: MYO3A: Added comment: Assessed by ClinGen as 'strong actionability' in paediatric patients. Included as a cause of pre-lingual deafness, therefore include in this panel, noting some reports of later onset.; Changed rating: GREEN |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.1781 | PRKG1 |
Zornitza Stark gene: PRKG1 was added gene: PRKG1 was added to gNBS. Sources: ClinGen for review, cardiac, treatable tags were added to gene: PRKG1. Mode of inheritance for gene: PRKG1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Phenotypes for gene: PRKG1 were set to Aortic aneurysm, familial thoracic 8, MIM#615436 Penetrance for gene: PRKG1 were set to Incomplete Review for gene: PRKG1 was set to AMBER Added comment: Assessed as 'strong actionability' in paediatric patients by ClinGen. FTAAD is a rare genetic vascular disease characterized by the familial occurrence of thoracic aortic aneurysm, dissection, or dilatation affecting one or more aortic segments (aortic root, ascending aorta, arch, or descending aorta). Variable age of clinical presentation. Prophylactic surgical repair of the aorta is recommended at 4.5-5.0 cm for patients with pathogenic variants in MYH11, SMAD3, and ACTA2 and at 4.0-4.5 cm for patients with pathogenic variants in TGFBR1 or TGFBR2. Beta adrenergic-blocking agents are recommended to reduce aortic dilation. Losartan was added as an alternative to beta adrenergic-blocking agents in FTAAD after studies showed its efficacy in children and young adults with MFS who were randomly assigned to losartan or atenolol. Penetrance: A study of 31 individuals with PRKG1 pathogenic variants indicated that 63% presented with an aortic dissection and 37% had aortic root enlargement. The cumulative risk of an aortic dissection or repair of an aortic aneurysm by age 55 has been estimated as 86% (95% CI: 70-95%). Sources: ClinGen |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.1778 | LOX |
Zornitza Stark gene: LOX was added gene: LOX was added to gNBS. Sources: ClinGen for review, cardiac, treatable tags were added to gene: LOX. Mode of inheritance for gene: LOX was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Phenotypes for gene: LOX were set to Aortic aneurysm, familial thoracic 10, MIM#617168 Penetrance for gene: LOX were set to Incomplete Review for gene: LOX was set to AMBER Added comment: Assessed as 'strong actionability' in paediatric patients by ClinGen. FTAAD is a rare genetic vascular disease characterized by the familial occurrence of thoracic aortic aneurysm, dissection, or dilatation affecting one or more aortic segments (aortic root, ascending aorta, arch, or descending aorta). Variable age of clinical presentation. Prophylactic surgical repair of the aorta is recommended at 4.5-5.0 cm for patients with pathogenic variants in MYH11, SMAD3, and ACTA2 and at 4.0-4.5 cm for patients with pathogenic variants in TGFBR1 or TGFBR2. Beta adrenergic-blocking agents are recommended to reduce aortic dilation. Losartan was added as an alternative to beta adrenergic-blocking agents in FTAAD after studies showed its efficacy in children and young adults with MFS who were randomly assigned to losartan or atenolol. Penetrance: A study of 15 individuals with LOX pathogenic variants indicated that 73% had aortic aneurysms and 1 individual (7%) had an aortic dissection. Sources: ClinGen |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.1772 | RUNX1 |
Zornitza Stark gene: RUNX1 was added gene: RUNX1 was added to gNBS. Sources: ClinGen for review, treatable, haematological tags were added to gene: RUNX1. Mode of inheritance for gene: RUNX1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Phenotypes for gene: RUNX1 were set to Platelet disorder, familial, with associated myeloid malignancy, MIM# 601399 Review for gene: RUNX1 was set to AMBER Added comment: Assessed as 'moderate actionability' in paediatric patients by ClinGen. HTHCPS is characterized by mild to moderate thrombocytopenia with normal platelet size, abnormal platelet functioning (defective release of delta granules and/or aggregation defects), and an increased risk of developing a haematologic malignancy. Age of onset of bleeding can be highly variable, with some individuals presenting in early infancy and others not recognizing their symptoms until much later in life. Severe thrombocytopenia or profound platelet dysfunction can result in recognition during the perinatal or infancy period. Hematologic malignancies can occur in childhood or adulthood; the range of age of onset is wide with a median age of 33 years. Use of clotting promotors (e.g., desmopressin, epsilon aminocaproic acid, tranexamic acid) can be used for surgeries, injuries, or dental treatments. Platelet transfusions may be used for severe bleeding or procedures with a high bleeding risk. Though there is no specific treatment for HTHCPS, there are recommendations regarding the indications and timing of hematopoietic stem cell transplantation (HSCT) that vary. HSCT in pre-malignancy patients, particularly in the absence of any clonal progression, is debatable due to transplantation-associated risks and incomplete penetrance. Some suggested indications for HSCT include severe or symptomatic cytopenias, severe marrow dysplasia (particularly in the context of falling blood counts), complex or high-risk (e.g., monosomy 7) cytogenetic abnormalities (particularly if the clones are large or increasing in size) and increasing blasts >5%. Consider use of a medical alert bracelet for thrombocytopenia, platelet dysfunction, or hematologic malignancy as indicated. Sources: ClinGen |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.1770 | DICER1 |
Zornitza Stark gene: DICER1 was added gene: DICER1 was added to gNBS. Sources: ClinGen Mode of inheritance for gene: DICER1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Phenotypes for gene: DICER1 were set to DICER1 syndrome, MONDO:0017288 Penetrance for gene: DICER1 were set to Incomplete Review for gene: DICER1 was set to AMBER Added comment: Rated as 'moderate actionability' in paediatric patients by ClinGen. A multiple registry study examining neoplasm incidence in a cohort containing 102 non-probands with DICER1 pathogenic variants (3,344 person-years of observation in non-probands) found that by age 10 years, 5.3% (95% CI, 0.6% to 9.7%) of non-probands had developed a neoplasm (females, 4.0%; males, 6.6%). By age 50 years, 19.3% (95% CI, 8.4% to 29.0%) of non-probands had developed a neoplasm (females, 26.5%; males, 10.2%). Most individuals with pathogenic variants in DICER1 are healthy or have only minor DICER1-associaited conditions. The most severe manifestations tend to present in early childhood with adulthood characterized by good health. The majority of tumors in individuals with DICER1 pathogenic variants occur in individuals younger than 40. Many of these tumors typically only occur in childhood, including: PPB (before age 7), CN (before age 4), CBME typically occurs in young children, pituitary blastoma (before age 2), and childhood pineoblastoma (only one has been reported associated with a DICER1 mutation). Surveillance recommendations: In order to detect pulmonary cysts or PPB (one of the most important causes of DICER1-associated morbidity and mortality), chest x-rays are recommended every 6 months from birth to through age 7 years and then annually from 8-12 years. A chest computed tomography (CT) (with efforts to minimize radiation) should be obtained by 9 months of age, preferably between 3 and 6 months of age and repeated at approximately 2.5 years of age. Abdominal ultrasound is recommended for the detection in infancy or at the time of the first chest CT then every 6-12 months until at least 8 years of age. Annual ultrasound may be considered until 12 years of age. Beginning at ages 8-10 females should receive pelvic ultrasound performed in conjunction with abdominal ultrasound (every 6-12 months) until at least age 40 or as needed for signs and symptoms. Individuals should undergo thyroid ultrasound with assessment for regional adenopathy every 2 to 3 years starting at age 8 or as needed for signs and symptoms. An annual routine dilated ophthalmologic exam with visual acuity screening is recommended from age 3 to at least age 10 for detection of CBME. Sources: ClinGen |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.1753 | OAT |
Zornitza Stark gene: OAT was added gene: OAT was added to gNBS. Sources: ClinGen for review, treatable, metabolic tags were added to gene: OAT. Mode of inheritance for gene: OAT was set to BIALLELIC, autosomal or pseudoautosomal Phenotypes for gene: OAT were set to Gyrate atrophy of choroid and retina with or without ornithinemia MIM#258870 Review for gene: OAT was set to GREEN Added comment: Rated as 'moderate actionability' in paediatric patients by ClinGen. GA due to deficiency of the enzyme ornithine aminotransferase (OAT) is characterized by a triad of progressive chorioretinal degeneration, early cataract formation, and type II muscle fiber atrophy. GA first presents as night blindness and constriction of the visual field caused by sharply demarcated circular areas of chorioretinal atrophy in the periphery. Atrophic areas progressively increase, coalesce, and spread towards the macula leading to central visual loss and blindness (vision less than 20/200). Age at diagnosis ranges from 1 month to 44 years. The condition is characterized by the development of chorioretinal atrophic patches that start in the mid-peripheral retina in the first decade of life. Myopia, night blindness, changes in the macula (including cystic changes), and visual field affection usually start in the first or second decade. Most patients with GA have posterior subcapsular cataracts by the end of the second decade. Irreversible loss of vision and blindness generally occurs between 40 and 55 years of age but is highly variable. Treatment of GA consists mainly of dietary modifications to help lower elevated systemic ornithine levels. Restriction of dietary arginine, a precursor of ornithine, appears to have therapeutic value. Pediatric patients undergoing arginine restriction should receive enough calories in their diet supplemented by essential amino acids, vitamins, and minerals to avoid malnutrition and excessive break down of endogenous proteins. A long-term observational study of 27 patients with GA, 17 who complied with the arginine-restricted diet and 10 who were noncompliant, found that at 14 years follow-up the rates of vision loss were significantly slower in the compliant group for 3 of the 4 outcome measures, when adjusted for age. Sources: ClinGen |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.1748 | PRKAR1A |
Zornitza Stark edited their review of gene: PRKAR1A: Added comment: Rated as 'strong actionability' in paediatric patients by ClinGen, principally due to benefit from early detection of cardiac myxomas through surveillance. CNC is associated with skin pigmentary abnormalities, myxomas, endocrine tumors or overactivity, and schwannomas. Lentigines are the most common presenting feature of CNC and may be present at birth. Typically, they increase in number at puberty, fade after the fourth decade, but may still be evident in the eighth decade. Cutaneous myxomas appear between birth and the fourth decade. Cardiac myxomas may occur at a young age. Breast myxomas occur in females after puberty. Males and females may develop nipple myxomas at any age. In a minority of individuals, PPNAD presents in the first two to three years; in the majority, it presents in the second or third decade. LCCSCT often present in the first decade. Signs and symptoms of CNC may be present at birth, but the median age of diagnosis is 20 years. Most patients with CNC present with a mild increase in GH. However, clinically evident acromegaly is a relatively frequent manifestation of CNC, occurring in approximately 10% of adults at the time of presentation. Most individuals with CNC have a normal life span. However, because some die at an early age, the average life expectancy for individuals with CNC is 50 years. Causes of death include complications of cardiac myxoma (myxoma emboli, cardiomyopathy, cardiac arrhythmia, and surgical intervention), metastatic or intracranial PMS, thyroid carcinoma, and metastatic pancreatic and testicular tumors. The only preventive measure in an asymptomatic individual is surgical removal of a heart tumor (cardiac myxoma) prior to the development of heart dysfunction, stroke, or other embolism. Cardiac myxomas should be diagnosed early through regular screening. Development of metabolic abnormalities from Cushing syndrome or arthropathy and other complications from acromegaly may be prevented by medical or surgical treatment of the respective endocrine manifestations. The overall penetrance of CNC in those with a PRKAR1A pathogenic variant is greater than 95% by age 50 years. 30-60% have cardiac myxomas.; Changed rating: GREEN; Changed phenotypes: Carney complex, type 1, MIM# 160980 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.1746 | MEN1 |
Zornitza Stark changed review comment from: For review re age of onset: surveillance starts age 5, disease onset generally later.; to: For review re age of onset: surveillance starts age 5, disease onset generally later. Rated as 'strong actionability' in paediatric patients by ClinGen. Parathyroid tumors, which cause PHPT, are the most common feature and the first clinical manifestation in 90% of individuals with MEN1 with onset typically between ages 20 and 25 years. Almost all (95-100%) individuals with MEN1 can expect to have PHPT by age 50 years. However, MEN1 affects all age groups, with a reported age range of 5 to 81 years; 17% of MEN1 tumors are diagnosed under age 21. Untreated patients with MEN1 have a decreased life expectancy with a 50% probability of death by age 50. The cause of death in 50-70% of cases is due to a malignant tumor process or sequelae of the disease, with malignancies accounting for 30% of all deaths. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.1740 | TGFB2 |
Zornitza Stark gene: TGFB2 was added gene: TGFB2 was added to gNBS. Sources: ClinGen Mode of inheritance for gene: TGFB2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Phenotypes for gene: TGFB2 were set to Loeys-Dietz syndrome 4, MIM# 614816 Review for gene: TGFB2 was set to GREEN Added comment: Rated as 'strong actionability' in paediatric patients by ClinGen. Individuals with LDS are predisposed to widespread and aggressive arterial aneurysms which are the major source of morbidity and mortality. Aortic growth can be faster than 10mm per year. Aortic dissection has been observed in early childhood, and the mean age of death is 26 years. Other life-threatening manifestations include spontaneous rupture of the spleen, bowel, and uterine rupture during pregnancy. Prophylactic surgical repair is typically recommended at an aortic diameter of ≥ 4.2 cm. Beta-blockers or other medications can be used to reduce hemodynamic stress. Consider Medicalert bracelet. Use of subacute bacterial endocarditis prophylaxis should be considered for individuals with connective tissue disorders and documented evidence of mitral and/or aortic regurgitation who are undergoing dental work or other procedures expected to contaminate the bloodstream with bacteria. Because of a high risk of cervical spine instability, a flexion and extension x-ray of the cervical spine should be performed prior to intubation or any other procedure involving manipulation of the neck. Sources: ClinGen |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.1736 | TECRL |
Zornitza Stark gene: TECRL was added gene: TECRL was added to gNBS. Sources: ClinGen for review, cardiac, treatable tags were added to gene: TECRL. Mode of inheritance for gene: TECRL was set to BIALLELIC, autosomal or pseudoautosomal Phenotypes for gene: TECRL were set to Ventricular tachycardia, catecholaminergic polymorphic, 3, MIM# 614021 Review for gene: TECRL was set to GREEN Added comment: Rated as 'strong actionability' for paediatric patients by ClinGen. The mean age of onset of symptoms (usually a syncopal episode) of CPVT is between age seven and twelve years; onset as late as the fourth decade of life has been reported. Nearly 60% of patients have at least one syncopal episode before age 40. If untreated, CPVT is highly lethal, as approximately 30% of genetically affected individuals experience at least one cardiac arrest and up to 80% one or more syncopal spells. In untreated patients, the 8-year fatal or near-fatal event rates of 25% have been reported. Sudden death may be the first manifestation of the disease. Beta-blockers lacking intrinsic sympathomimetic activity are recommended as a first-line therapy in all patients with a clinical diagnosis of CPVT, including those with documented spontaneous, stress-induced VAs. Guidelines differ in their recommendations about utilizing beta-blocker therapy in phenotype negative individuals. Treatment with beta blockers is associated with a reduction in adverse cardiac events. However, variability in outcome with beta-blocker therapy is due to multiple factors, including dosing and compliance. In a study of 101 patients with CPVT (22 diagnosed clinically and 79 diagnosed molecularly), 81 were administered beta-blockers (57 symptomatic and 24 asymptomatic individuals). Estimated 4- and 8-year cardiac event rates were 8% and 27%, respectively in patients taking beta-blockers, and 33% and 58% in those not taking beta blockers (log-rank p=0.01). Corresponding statistics for fatal events were 1% and 11% with beta-blockers vs. 18% and 25% without (log-rank p=0.05). Event rates in asymptomatic patients with a positive genotype were similar to other patients. In multivariate models, absence of beta-blockers was an independent predictor of cardiac events (hazard ratio [HR], 5.48; 95% CI, 1.8 to 16.7, p=0.003) and of fatal events (HR, 5.54; 95% CI, 1.2 to 26.1, p=0.03). Of the 37 asymptomatic patients with a positive genotype, 9 (24%) had cardiac events. In patients with CPVT and recurrent sustained VT or syncope, while receiving adequate or maximally tolerated beta blocker, treatment intensification with either combination medication therapy (e.g., beta blocker with flecainide), left cardiac sympathetic denervation, and/or an ICD is recommended. Clinical penetrance ranges from 25 to 100%, with an average of 70 to 80%. Syncope appears to be the first symptom in more than half of the patients. When untreated, mortality from CPVT is high, reaching 30 to 50% by the age of 30 years. For review: age of onset and penetrance. Sources: ClinGen |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.1734 | CALM3 |
Zornitza Stark gene: CALM3 was added gene: CALM3 was added to gNBS. Sources: ClinGen for review, cardiac, treatable tags were added to gene: CALM3. Mode of inheritance for gene: CALM3 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Phenotypes for gene: CALM3 were set to Ventricular tachycardia, catecholaminergic polymorphic 6 , MIM# 618782 Penetrance for gene: CALM3 were set to Incomplete Review for gene: CALM3 was set to GREEN Added comment: Rated as 'strong actionability' for paediatric patients by ClinGen. The mean age of onset of symptoms (usually a syncopal episode) of CPVT is between age seven and twelve years; onset as late as the fourth decade of life has been reported. Nearly 60% of patients have at least one syncopal episode before age 40. If untreated, CPVT is highly lethal, as approximately 30% of genetically affected individuals experience at least one cardiac arrest and up to 80% one or more syncopal spells. In untreated patients, the 8-year fatal or near-fatal event rates of 25% have been reported. Sudden death may be the first manifestation of the disease. Instances of sudden infant death syndrome (SIDS) have been associated with pathogenic variants in RYR2. Individuals with pathogenic variants in CALM1, CALM2 or CALM3 can have a severe phenotype, with earlier onset, QT prolongation, and a high predilection for cardiac arrest and sudden death. Beta-blockers lacking intrinsic sympathomimetic activity are recommended as a first-line therapy in all patients with a clinical diagnosis of CPVT, including those with documented spontaneous, stress-induced VAs. Guidelines differ in their recommendations about utilizing beta-blocker therapy in phenotype negative individuals. Treatment with beta blockers is associated with a reduction in adverse cardiac events. However, variability in outcome with beta-blocker therapy is due to multiple factors, including dosing and compliance. In a study of 101 patients with CPVT (22 diagnosed clinically and 79 diagnosed molecularly), 81 were administered beta-blockers (57 symptomatic and 24 asymptomatic individuals). Estimated 4- and 8-year cardiac event rates were 8% and 27%, respectively in patients taking beta-blockers, and 33% and 58% in those not taking beta blockers (log-rank p=0.01). Corresponding statistics for fatal events were 1% and 11% with beta-blockers vs. 18% and 25% without (log-rank p=0.05). Event rates in asymptomatic patients with a positive genotype were similar to other patients. In multivariate models, absence of beta-blockers was an independent predictor of cardiac events (hazard ratio [HR], 5.48; 95% CI, 1.8 to 16.7, p=0.003) and of fatal events (HR, 5.54; 95% CI, 1.2 to 26.1, p=0.03). Of the 37 asymptomatic patients with a positive genotype, 9 (24%) had cardiac events. In patients with CPVT and recurrent sustained VT or syncope, while receiving adequate or maximally tolerated beta blocker, treatment intensification with either combination medication therapy (e.g., beta blocker with flecainide), left cardiac sympathetic denervation, and/or an ICD is recommended. Clinical penetrance ranges from 25 to 100%, with an average of 70 to 80%. Syncope appears to be the first symptom in more than half of the patients. When untreated, mortality from CPVT is high, reaching 30 to 50% by the age of 30 years. For review: age of onset and penetrance. Sources: ClinGen |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.1732 | CALM2 |
Zornitza Stark gene: CALM2 was added gene: CALM2 was added to gNBS. Sources: ClinGen for review, cardiac, treatable tags were added to gene: CALM2. Mode of inheritance for gene: CALM2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Phenotypes for gene: CALM2 were set to Catecholaminergic polymorphic ventricular tachycardia MONDO:0017990 Review for gene: CALM2 was set to GREEN Added comment: Rated as 'strong actionability' for paediatric patients by ClinGen. The mean age of onset of symptoms (usually a syncopal episode) of CPVT is between age seven and twelve years; onset as late as the fourth decade of life has been reported. Nearly 60% of patients have at least one syncopal episode before age 40. If untreated, CPVT is highly lethal, as approximately 30% of genetically affected individuals experience at least one cardiac arrest and up to 80% one or more syncopal spells. In untreated patients, the 8-year fatal or near-fatal event rates of 25% have been reported. Sudden death may be the first manifestation of the disease. Instances of sudden infant death syndrome (SIDS) have been associated with pathogenic variants in RYR2. Individuals with pathogenic variants in CALM1, CALM2 or CALM3 can have a severe phenotype, with earlier onset, QT prolongation, and a high predilection for cardiac arrest and sudden death. Beta-blockers lacking intrinsic sympathomimetic activity are recommended as a first-line therapy in all patients with a clinical diagnosis of CPVT, including those with documented spontaneous, stress-induced VAs. Guidelines differ in their recommendations about utilizing beta-blocker therapy in phenotype negative individuals. Treatment with beta blockers is associated with a reduction in adverse cardiac events. However, variability in outcome with beta-blocker therapy is due to multiple factors, including dosing and compliance. In a study of 101 patients with CPVT (22 diagnosed clinically and 79 diagnosed molecularly), 81 were administered beta-blockers (57 symptomatic and 24 asymptomatic individuals). Estimated 4- and 8-year cardiac event rates were 8% and 27%, respectively in patients taking beta-blockers, and 33% and 58% in those not taking beta blockers (log-rank p=0.01). Corresponding statistics for fatal events were 1% and 11% with beta-blockers vs. 18% and 25% without (log-rank p=0.05). Event rates in asymptomatic patients with a positive genotype were similar to other patients. In multivariate models, absence of beta-blockers was an independent predictor of cardiac events (hazard ratio [HR], 5.48; 95% CI, 1.8 to 16.7, p=0.003) and of fatal events (HR, 5.54; 95% CI, 1.2 to 26.1, p=0.03). Of the 37 asymptomatic patients with a positive genotype, 9 (24%) had cardiac events. In patients with CPVT and recurrent sustained VT or syncope, while receiving adequate or maximally tolerated beta blocker, treatment intensification with either combination medication therapy (e.g., beta blocker with flecainide), left cardiac sympathetic denervation, and/or an ICD is recommended. Clinical penetrance ranges from 25 to 100%, with an average of 70 to 80%. Syncope appears to be the first symptom in more than half of the patients. When untreated, mortality from CPVT is high, reaching 30 to 50% by the age of 30 years. For review: age of onset and penetrance. Sources: ClinGen |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.1730 | CALM1 |
Zornitza Stark gene: CALM1 was added gene: CALM1 was added to gNBS. Sources: ClinGen for review, cardiac, treatable tags were added to gene: CALM1. Mode of inheritance for gene: CALM1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Phenotypes for gene: CALM1 were set to Ventricular tachycardia, catecholaminergic polymorphic, 4, MIM# 614916 Penetrance for gene: CALM1 were set to Incomplete Review for gene: CALM1 was set to GREEN Added comment: Rated as 'strong actionability' for paediatric patients by ClinGen. The mean age of onset of symptoms (usually a syncopal episode) of CPVT is between age seven and twelve years; onset as late as the fourth decade of life has been reported. Nearly 60% of patients have at least one syncopal episode before age 40. If untreated, CPVT is highly lethal, as approximately 30% of genetically affected individuals experience at least one cardiac arrest and up to 80% one or more syncopal spells. In untreated patients, the 8-year fatal or near-fatal event rates of 25% have been reported. Sudden death may be the first manifestation of the disease. Instances of sudden infant death syndrome (SIDS) have been associated with pathogenic variants in RYR2. Individuals with pathogenic variants in CALM1, CALM2 or CALM3 can have a severe phenotype, with earlier onset, QT prolongation, and a high predilection for cardiac arrest and sudden death. Beta-blockers lacking intrinsic sympathomimetic activity are recommended as a first-line therapy in all patients with a clinical diagnosis of CPVT, including those with documented spontaneous, stress-induced VAs. Guidelines differ in their recommendations about utilizing beta-blocker therapy in phenotype negative individuals. Treatment with beta blockers is associated with a reduction in adverse cardiac events. However, variability in outcome with beta-blocker therapy is due to multiple factors, including dosing and compliance. In a study of 101 patients with CPVT (22 diagnosed clinically and 79 diagnosed molecularly), 81 were administered beta-blockers (57 symptomatic and 24 asymptomatic individuals). Estimated 4- and 8-year cardiac event rates were 8% and 27%, respectively in patients taking beta-blockers, and 33% and 58% in those not taking beta blockers (log-rank p=0.01). Corresponding statistics for fatal events were 1% and 11% with beta-blockers vs. 18% and 25% without (log-rank p=0.05). Event rates in asymptomatic patients with a positive genotype were similar to other patients. In multivariate models, absence of beta-blockers was an independent predictor of cardiac events (hazard ratio [HR], 5.48; 95% CI, 1.8 to 16.7, p=0.003) and of fatal events (HR, 5.54; 95% CI, 1.2 to 26.1, p=0.03). Of the 37 asymptomatic patients with a positive genotype, 9 (24%) had cardiac events. In patients with CPVT and recurrent sustained VT or syncope, while receiving adequate or maximally tolerated beta blocker, treatment intensification with either combination medication therapy (e.g., beta blocker with flecainide), left cardiac sympathetic denervation, and/or an ICD is recommended. Clinical penetrance ranges from 25 to 100%, with an average of 70 to 80%. Syncope appears to be the first symptom in more than half of the patients. When untreated, mortality from CPVT is high, reaching 30 to 50% by the age of 30 years. For review: age of onset and penetrance. Sources: ClinGen |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.1728 | RPE65 |
Zornitza Stark gene: RPE65 was added gene: RPE65 was added to gNBS. Sources: ClinGen for review, treatable, ophthalmological tags were added to gene: RPE65. Mode of inheritance for gene: RPE65 was set to BIALLELIC, autosomal or pseudoautosomal Phenotypes for gene: RPE65 were set to Leber congenital amaurosis 2 MIM#204100; Retinitis pigmentosa 20 MIM#613794 Review for gene: RPE65 was set to GREEN Added comment: Assessed as 'strong actionability' in paediatric patients by ClinGen. Biallelic RPE65 mutation-associated retinal dystrophy is a form of IRD caused by biallelic pathogenic variants in RPE65; it presents as a spectrum of disease with variable age of onset and progression of vision loss. Common clinical findings across the spectrum include night blindness, progressive loss of visual fields and loss of central vision. In LCA, night blindness often occurs from birth. Characteristically, these patients have residual cone-mediated vision in the first to third decades with progressive visual field loss until complete blindness is observed, most often in mid- to late-adulthood. A range of age of onset has been described for night blindness in RP, but it typically onsets in later childhood. In December 2017, the FDA approved LUXTURNA (voretigene neparvovec-rzyl) gene therapy for the treatment of patients with confirmed biallelic RPE65 mutation-associated retinal dystrophy. The FDA’s conclusion of efficacy is based on improvement in a functional vision score over 1 year in a single open-label controlled Phase 3 study of 31 affected patients. The average age of the 31 randomized patients was 15 years (range 4 to 44 years), including 64% pediatric subjects (n=20, age from 4 to 17 years) and 36% adults (n=11). Functional vision was scored by a patient’s ability to navigate a course in various luminance levels. Using both treated eyes of the 21 subjects in the LUXTURNA treatment group, 11 (52%) had a clinically meaningful score improvement, while only one of the ten (10%) subjects in the control group had a clinically meaningful score improvement. Using the first treated eye only, 15/21 (71%) had a clinically meaningful score improvement, while no comparable score improvement was observed in controls. Other secondary clinical outcomes were also examined. Analysis of white light full-field light sensitivity threshold testing showed statistically significant improvement at 1 year in the LUXTURNA treatment group compared to the control group. The change in visual acuity was not significantly different between the LUXTURNA and control groups. LUXTURNA is administered subretinally by injection. Per the FDA package insert, the most common adverse reactions (incidence ≥ 5%) in the clinical trials for LUXTURNA included conjunctival hyperemia, cataract, increased intraocular pressure, retinal tear, dellen (thinning of the corneal stroma), and macular hole. Several other ocular adverse effects were also reported, including risk of endophthalmitis. Safety data was included on the basis of 41 patients (81 eyes). For review: availability of therapy? Sources: ClinGen |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.1724 | ITGB3 |
Zornitza Stark gene: ITGB3 was added gene: ITGB3 was added to gNBS. Sources: ClinGen treatable, haematological tags were added to gene: ITGB3. Mode of inheritance for gene: ITGB3 was set to BIALLELIC, autosomal or pseudoautosomal Phenotypes for gene: ITGB3 were set to Glanzmann thrombasthenia 2, MIM# 619267 Review for gene: ITGB3 was set to GREEN Added comment: Rated as 'strong actionability' in paediatric patients by ClinGen. GT can present soon after birth with episodic mucocutaneous bleeding, purpura, petechiae, unprovoked bruising, and excessive bleeding from the umbilical stump or post-circumcision. Major bleeding complications during the neonatal period, such as ICH following delivery are rare. The clinical severity of GT tends to diminish with age, although the bleeding manifestations persist and are life-long. Recombinant activated factor VII (rFVIIa) may be considered for patients with: moderate to severe acute bleeding; for treatment of refractory minor bleeds; for prophylaxis in patients with frequent severe bleeds; treatment during minor and major surgery; and in patients who are refractory to platelet transfusion. Some guidelines suggest utilizing rFVIIa as a first line therapy and saving platelet transfusion for more severe or non-responsive bleeds. High doses have been successful, particularly if used early and upfront. rFVIIa in a dose of =80 µg/kg at intervals of 2.5 h or less were observed to be safe and effective in nonsurgical bleeds, minor and major procedures in patients with or without antibodies, and/or refractoriness. The International Glanzmann Thrombasthenia Registry (GTR), published in 2015, studied 184 patients with 829 bleeding episodes and 96 patients with 206 surgical interventions. rFVIIa alone was used in 124/829 bleeds and the proportion of successful treatment to stop bleeding was 91%. In patients without antibodies/refractoriness, rFVIIa, either alone or with antifibrinolytics, and platelets±antifibrinolytics were rated 100% effective for 24 minor and 4 major procedures. The lowest effectiveness of rFVIIa treatment alone was 88.9% (16/18 effective minor procedures) in refractory patients with platelet antibodies. Desmopressin (DDAVP) may be considered as an additional treatment for mild bleeding episodes. DDAVP has been shown to be effective in many bleeding disorders, including inherited platelet function disorders. However, DDAVP efficacy among GT patients has not been established and guideline recommendations are conflicting. Sources: ClinGen |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.1722 | ITGA2B |
Zornitza Stark gene: ITGA2B was added gene: ITGA2B was added to gNBS. Sources: ClinGen treatable, haematological tags were added to gene: ITGA2B. Mode of inheritance for gene: ITGA2B was set to BIALLELIC, autosomal or pseudoautosomal Phenotypes for gene: ITGA2B were set to Glanzmann thrombasthaenia 1, MIM# 273800 Review for gene: ITGA2B was set to GREEN Added comment: Rated as 'strong actionability' in paediatric patients by ClinGen. GT can present soon after birth with episodic mucocutaneous bleeding, purpura, petechiae, unprovoked bruising, and excessive bleeding from the umbilical stump or post-circumcision. Major bleeding complications during the neonatal period, such as ICH following delivery are rare. The clinical severity of GT tends to diminish with age, although the bleeding manifestations persist and are life-long. Recombinant activated factor VII (rFVIIa) may be considered for patients with: moderate to severe acute bleeding; for treatment of refractory minor bleeds; for prophylaxis in patients with frequent severe bleeds; treatment during minor and major surgery; and in patients who are refractory to platelet transfusion. Some guidelines suggest utilizing rFVIIa as a first line therapy and saving platelet transfusion for more severe or non-responsive bleeds. High doses have been successful, particularly if used early and upfront. rFVIIa in a dose of =80 µg/kg at intervals of 2.5 h or less were observed to be safe and effective in nonsurgical bleeds, minor and major procedures in patients with or without antibodies, and/or refractoriness. The International Glanzmann Thrombasthenia Registry (GTR), published in 2015, studied 184 patients with 829 bleeding episodes and 96 patients with 206 surgical interventions. rFVIIa alone was used in 124/829 bleeds and the proportion of successful treatment to stop bleeding was 91%. In patients without antibodies/refractoriness, rFVIIa, either alone or with antifibrinolytics, and platelets±antifibrinolytics were rated 100% effective for 24 minor and 4 major procedures. The lowest effectiveness of rFVIIa treatment alone was 88.9% (16/18 effective minor procedures) in refractory patients with platelet antibodies. Desmopressin (DDAVP) may be considered as an additional treatment for mild bleeding episodes. DDAVP has been shown to be effective in many bleeding disorders, including inherited platelet function disorders. However, DDAVP efficacy among GT patients has not been established and guideline recommendations are conflicting. Sources: ClinGen |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.1721 | F7 |
Zornitza Stark changed review comment from: Well established gene-disease association. Variable severity. Treatment: Recombinant coagulation Factor VIIa Non-genetic confirmatory testing: factor VII level; to: Well established gene-disease association. Variable severity. Treatment: Recombinant coagulation Factor VIIa Non-genetic confirmatory testing: factor VII level Rated as 'strong actionability' in paediatric patients by ClinGen. Clinical expression of factor VII deficiency is highly variable, and no consistent relationship has been found between the severity of the hemorrhagic syndrome and the residual levels of FVII activity. Individuals can be completely asymptomatic despite a very low FVII level. A bleeding history appears more predictive of further bleeding than the factor VII level. Factor VII levels increase during pregnancy, but levels usually remain insufficient for hemostasis in severely affected cases. Individuals with no history of bleeding do not appear to be at increased risk of PPH. Heterozygotes often have approximately half-normal levels of coagulation factors and are often asymptomatic. However, up to 2% of patients with severe bleeding phenotype are heterozygotes. Consider prophylaxis using rFVIIa in certain circumstances. Long term prophylaxis should be considered for cases with a personal or family history of severe bleeding or with FVII activity <0.01 IU/ml using rFVIIa, adjusting to maintain clinical response. Short term prophylaxis should be considered for cases for neonates without a personal or family history of severe bleeding but who have FVII activity 0.01-0.05 IU/ml up to 6-12 months of age. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.1701 | GLA |
Zornitza Stark changed review comment from: For review: screen only for males or include both?; to: Assessed as 'moderate actionability' in paediatric patients by ClinGen. In classic FD, the first symptoms, including chronic neuropathic pain and episodic severe pain crises, emerge during childhood (typically age 3-10 years). Heterozygous females typically have a later median age of onset than males (9-13 years versus 13-23 years). Rarely, females may be relatively asymptomatic and have a normal life span or may have symptoms as severe as males with the classic phenotype. Cardiac and/or cerebrovascular disease is present in most males by middle age while ESRD usually develops during the third to fifth decade. Renal and cardiac failure represent major sources of morbidity, and account for the reduced lifespan among affected males (50-58 years) and females (70-75 years) compared to the normal population. A systematic review of RCTs of ERT reported on nine studies of 351 FD patients; however, many of these studies reported only on the effect of ERT on levels of enzyme substrate. Data from 2 trials (n=39 males) found no statistically significant differences in plasma enzyme substrate and one trial (n=24 males) found no statistical differences in renal function between individuals treated with agalsidase alfa and placebo (up to 6-month follow-up). Similar results were seen for agalsidase beta. One trial of 26 male patients found a statistically significant difference in pain, favoring agalsidase alfa compared to placebo at 5-6 months after treatment. No trial reported on the effect of agalsidase alfa on mortality or cardiac/cerebrovascular disease. One trial of agalsidase beta (n=82 males and females) found no difference in mortality, renal function, or symptoms or complications of cardiac or cerebrovascular disease over 18 months. The long-term influence of ERT on risk of morbidity and mortality related to FD remains to be established. Migalastat, an oral chaperone drug, is recommended as an option for treatment for some patients with FD who are over 16 years with an amenable genetic variant who would usually be offered ERT. For non-amenable genotypes, migalastat may result in a net loss of alpha-Gal A activity, potentially worsening the disease condition. A systematic review evaluated 2 phase III RCTs that both included males and females. One RCT randomized patients to switch from ERT to migalastat (n = 36) or continue with ERT (n = 24) during an 18-month period with a 12-month extension in which all patients received migalastat. During the treatment period, the percentage of patients who had a renal, cardiac, or cerebrovascular event or died was 29% of patients on migalastat compared to 44% of patients on ERT. However, this difference was not statistically significant. A second RCT compared migalastat (n=34) with placebo (n=33) over a 6-month period, with an 18-month extension study. The primary outcome was change from baseline in interstitial capillary inclusions of the enzyme substrate globotriaosylceramide (GL-3), which was not significantly different between groups. Results from both trials indicate that migalastat does not have a significant beneficial effect on pain, health-related quality of life outcomes, or glomerular filtration rate (results were uncertain due to large confidence intervals, small sample sizes, and/or short follow-up time). Migalastat did not influence left ventricular ejection fraction but did improve left ventricular mass over 18 months. There are a number of recommendations for surveillance and agents to avoid (amiodarone). There is no consensus as to when ERT should be started. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.1699 | GATA4 | Zornitza Stark Phenotypes for gene: GATA4 were changed from Atrial septal defect 2 MIM#607941; Atrioventricular septal defect 4 MIM#614430; Ventricular septal defect 1 MIM#614429 to Neonatal diabetes mellitus, MONDO:0016391, GATA4-related | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.1681 | COL4A4 |
Zornitza Stark changed review comment from: Assessed as 'strongly actionable' in paediatric patients by ClinGen. Treatment: ACE inhibitors alter long-term outcomes. Individuals with AR AS are recommended to be treated with ACEi at diagnosis (if older than 12-24 months), even before the onset of proteinuria.; to: Well established gene-disease association. Assessed as 'strongly actionable' in paediatric patients by ClinGen. Treatment: ACE inhibitors alter long-term outcomes. Individuals with AR AS are recommended to be treated with ACEi at diagnosis (if older than 12-24 months), even before the onset of proteinuria. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.1681 | COL4A4 |
Zornitza Stark changed review comment from: Assessed as 'strongly actionable' in paediatric patients by ClinGen. Treatment: ACE inhibitors alter long-term outcomes. Males with XLAS are recommended to be treated with ACEi at diagnosis (if older than 12-24 months), even before the onset of proteinuria. Guidelines differ slightly for the initiation of treatment in females with XLAS; one guideline recommends initiation of treatment at onset of microalbuminuria while a second recommends initiation at onset of microalbuminuria, hypertension, or renal impairment.; to: Assessed as 'strongly actionable' in paediatric patients by ClinGen. Treatment: ACE inhibitors alter long-term outcomes. Individuals with AR AS are recommended to be treated with ACEi at diagnosis (if older than 12-24 months), even before the onset of proteinuria. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.1681 | COL4A5 |
Zornitza Stark changed review comment from: Well established gene-disease association. Natural history: In males, truncating variants in COL4A5 are associated with an earlier age at onset of kidney failure; risk of ESRD before age 30 is estimated as 90% for large rearrangements and pathogenic nonsense and frameshift variants, 70% for splice variants, and 50% for missense variants. In males, progressive SNHL is usually present by late childhood or early adolescence, and interior lenticous typically becomes apparent in late adolescence or early adulthood. In females, renal disease ranges from asymptomatic disease to lifelong microhematuria to renal failure at a young age. In females, progressive SNHL is typically later in life, lenticonus may not occur, and central retinopathy is rare. Assessed as 'strongly actionable' in paediatric patients by ClinGen. Treatment: ACE inhibitors alter long-term outcomes. Males with XLAS are recommended to be treated with ACEi at diagnosis (if older than 12-24 months), even before the onset of proteinuria. Guidelines differ slightly for the initiation of treatment in females with XLAS; one guideline recommends initiation of treatment at onset of microalbuminuria while a second recommends initiation at onset of microalbuminuria, hypertension, or renal impairment. For review: screen both males and females?; to: Well established gene-disease association. Natural history: In males, truncating variants in COL4A5 are associated with an earlier age at onset of kidney failure; risk of ESRD before age 30 is estimated as 90% for large rearrangements and pathogenic nonsense and frameshift variants, 70% for splice variants, and 50% for missense variants. In males, progressive SNHL is usually present by late childhood or early adolescence, and interior lenticous typically becomes apparent in late adolescence or early adulthood. In females, renal disease ranges from asymptomatic disease to lifelong microhematuria to renal failure at a young age. In females, progressive SNHL is typically later in life, lenticonus may not occur, and central retinopathy is rare. Assessed as 'strongly actionable' in paediatric patients by ClinGen. Treatment: ACE inhibitors alter long-term outcomes. Males with XLAS are recommended to be treated with ACEi at diagnosis (if older than 12-24 months), even before the onset of proteinuria. Guidelines differ slightly for the initiation of treatment in females with XLAS; one guideline recommends initiation of treatment at onset of microalbuminuria while a second recommends initiation at onset of microalbuminuria, hypertension, or renal impairment. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.1632 | SLC25A13 | John Christodoulou reviewed gene: SLC25A13: Rating: GREEN; Mode of pathogenicity: None; Publications: PMID: 20301360, PMID: 31255436; Phenotypes: neonatal cholestatic jaundice, neuropsychiatric abnormalities, ID, failure to thrive, hepatomegaly; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.1606 | PPT1 | John Christodoulou reviewed gene: PPT1: Rating: RED; Mode of pathogenicity: None; Publications: PMID: 21990111; Phenotypes: neurodegeneration, seizures, ataxia, optic atrophy, retinal abnormalities; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.1576 | PLEC | Zornitza Stark Phenotypes for gene: PLEC were changed from Muscular dystrophy; Epidermolysis bullosa simplex to Epidermolysis bullosa simplex with muscular dystrophy, MIM# 226670; Epidermolysis bullosa simplex with pyloric atresia, MIM# 612138; Epidermolysis bullosa simplex, Ogna type MIM#131950; Muscular dystrophy, limb-girdle, autosomal recessive 17, MIM# 613723 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.1573 | PLEC | Zornitza Stark reviewed gene: PLEC: Rating: RED; Mode of pathogenicity: None; Publications: ; Phenotypes: Epidermolysis bullosa simplex with muscular dystrophy, MIM# 226670, Epidermolysis bullosa simplex with pyloric atresia, MIM# 612138, Epidermolysis bullosa simplex, Ogna type MIM#131950, Muscular dystrophy, limb-girdle, autosomal recessive 17, MIM# 613723; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.1272 | HSD17B10 | John Christodoulou reviewed gene: HSD17B10: Rating: RED; Mode of pathogenicity: None; Publications: PMID: 22127393; Phenotypes: cardiomyopathy, early-onset intractable seizures, progressive choreoathetosis, spastic tetraplegia, optic atrophy, retinal degeneration, intellectual disability; Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.1247 | IGHMBP2 | Zornitza Stark Phenotypes for gene: IGHMBP2 were changed from Spinal muscular atrophy with respiratory distress to Neuronopathy, distal hereditary motor, type VI, MIM# 604320; Charcot-Marie-Tooth disease, axonal, type 2S, MIM# 616155 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.1233 | ITGB4 | Zornitza Stark Phenotypes for gene: ITGB4 were changed from Epidermolysis bullosa, junctional, with pyloric atresia to Epidermolysis bullosa of hands and feet, MIM# 131800; Epidermolysis bullosa, junctional, non-Herlitz type, MIM# 226650; Epidermolysis bullosa, junctional, with pyloric atresia, MIM# 226730 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.1230 | ITGB4 | Zornitza Stark reviewed gene: ITGB4: Rating: RED; Mode of pathogenicity: None; Publications: ; Phenotypes: Epidermolysis bullosa of hands and feet, MIM# 131800, Epidermolysis bullosa, junctional, non-Herlitz type, MIM# 226650, Epidermolysis bullosa, junctional, with pyloric atresia, MIM# 226730; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.1219 | KCNJ2 | Zornitza Stark Phenotypes for gene: KCNJ2 were changed from Andersen cardiodysrhythmic periodic paralysis to Andersen syndrome MIM#170390; Atrial fibrillation, familial, 9 MIM#613980; Short QT syndrome 3 MIM#609622 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.1217 | KCNJ2 | Zornitza Stark reviewed gene: KCNJ2: Rating: AMBER; Mode of pathogenicity: None; Publications: ; Phenotypes: Andersen syndrome MIM#170390, Atrial fibrillation, familial, 9 MIM#613980, Short QT syndrome 3 MIM#609622; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.910 | ELP1 | Zornitza Stark Phenotypes for gene: ELP1 were changed from Dysautonomia, familial to Dysautonomia, familial MIM#223900; paediatric medulloblastoma | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.907 | ELP1 | Zornitza Stark reviewed gene: ELP1: Rating: RED; Mode of pathogenicity: None; Publications: ; Phenotypes: Dysautonomia, familial MIM#223900, paediatric medulloblastoma; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.662 | LDLR |
Zornitza Stark changed review comment from: ClinGen: 'strong actionability' in paediatric patients. For review as clinical manifestations are typically in adulthood. Statin therapy is recommended to be initiated as early as 8-12 years of age. However, there is also a severe, bi-allelic form with onset in early childhood. Elevated LDL-C levels can be detected from infancy and strongly predispose patients with FH to progressive atherosclerosis throughout childhood and premature CVD in adulthood. Although complications of atherosclerosis occur most commonly in individuals aged >50, the pathophysiological processes begin in childhood and are affected by additional risk factors: hypertension, diabetes, smoking, obesity, poor diet, and physical inactivity. By 12 years of age, children with FH have significant thickening of the carotid intima-media, and by 18 years have coronary stenosis. In natural history studies, 50% of males and 25% of females with FH develop clinical CVD by age 50 years, but up to 10% can have severe premature CVD by 40 years of age. On average, individuals with HeFH experience their first coronary event at age 42, 20 years younger than the general population. Statins have changed the prognosis of FH such that the rates of cardiovascular (CV) events are equal to the general population after 10 years of treatment.; to: ClinGen: 'strong actionability' in paediatric patients. For review as clinical manifestations are typically in adulthood. Statin therapy is recommended to be initiated as early as 8-12 years of age. However, there is also a severe, bi-allelic form with onset in early childhood. Elevated LDL-C levels can be detected from infancy and strongly predispose patients with FH to progressive atherosclerosis throughout childhood and premature CVD in adulthood. Although complications of atherosclerosis occur most commonly in individuals aged >50, the pathophysiological processes begin in childhood and are affected by additional risk factors: hypertension, diabetes, smoking, obesity, poor diet, and physical inactivity. By 12 years of age, children with FH have significant thickening of the carotid intima-media, and by 18 years have coronary stenosis. In natural history studies, 50% of males and 25% of females with FH develop clinical CVD by age 50 years, but up to 10% can have severe premature CVD by 40 years of age. On average, individuals with HeFH experience their first coronary event at age 42, 20 years younger than the general population. Statins have changed the prognosis of FH such that the rates of cardiovascular (CV) events are equal to the general population after 10 years of treatment. Include bi-allelic disease in gNBS. Continue considering if and when mono-allelic disease should be included. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.662 | GATA4 | Zornitza Stark Phenotypes for gene: GATA4 were changed from Congenital heart defects to Atrial septal defect 2 MIM#607941; Atrioventricular septal defect 4 MIM#614430; Ventricular septal defect 1 MIM#614429 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.606 | GATA4 | Alison Yeung reviewed gene: GATA4: Rating: AMBER; Mode of pathogenicity: None; Publications: ; Phenotypes: Atrial septal defect 2 MIM#607941, Atrioventricular septal defect 4 MIM#614430, Ventricular septal defect 1 MIM#614429; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.585 | CBS |
Zornitza Stark changed review comment from: Well established gene-disease association. Multi-system disorder, onset in infancy. In general, individuals appear normal at birth but have a progressive disease course if untreated. Clinical features typically manifest in the first or second decade of life. Intellectual disability may be the first recognizable sign and may present as developmental delay after the first to second year of life. Myopia typically occurs after age one with the majority of untreated individuals developing ectopia lentis by age 8. Roughly half of patients show signs of osteoporosis by their teens. Cerebrovascular events typically manifest during young adulthood, though they have been reported earlier. Thromboembolism is the major cause of early death and morbidity. Among B₆-responsive individuals, a vascular event in adolescence or adulthood is often the presenting feature. Treatment: vitamin B6 (pyridoxine), methionine-restricted diet, folate, vitamin B12, betaine. Management guidelines PMID 27778219. Non-genetic confirmatory testing: plasma total homocysteine and plasma amino acids Paediatric actionable gene by ClinGen. Note excluded from reproductive carrier screening tests due to poor mappability, for review.; to: Well established gene-disease association. Multi-system disorder, onset in infancy. In general, individuals appear normal at birth but have a progressive disease course if untreated. Clinical features typically manifest in the first or second decade of life. Intellectual disability may be the first recognizable sign and may present as developmental delay after the first to second year of life. Myopia typically occurs after age one with the majority of untreated individuals developing ectopia lentis by age 8. Roughly half of patients show signs of osteoporosis by their teens. Cerebrovascular events typically manifest during young adulthood, though they have been reported earlier. Thromboembolism is the major cause of early death and morbidity. Among B₆-responsive individuals, a vascular event in adolescence or adulthood is often the presenting feature. Treatment: vitamin B6 (pyridoxine), methionine-restricted diet, folate, vitamin B12, betaine. Management guidelines PMID 27778219. Non-genetic confirmatory testing: plasma total homocysteine and plasma amino acids Paediatric actionable gene by ClinGen. Note excluded from reproductive carrier screening tests due to poor mappability: downgraded to Amber for now. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.541 | FH | John Christodoulou reviewed gene: FH: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: mitochondrial encephalopathy, failure to thrive, developmental delay, hypotonia, cerebral atrophy; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.477 | OPA1 | Zornitza Stark Phenotypes for gene: OPA1 were changed from Optic atrophy 1 to Mitochondrial DNA depletion syndrome 14 (encephalocardiomyopathic type)MIM# 616896; Behr syndrome MIM#210000, AR; Optic atrophy 1, MIM#165500; Optic atrophy plus syndrome, MIM# 125250 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.474 | OPA1 | Zornitza Stark reviewed gene: OPA1: Rating: RED; Mode of pathogenicity: None; Publications: ; Phenotypes: Mitochondrial DNA depletion syndrome 14 (encephalocardiomyopathic type)MIM# 616896, Behr syndrome MIM#210000, AR, Optic atrophy 1, MIM#165500, Optic atrophy plus syndrome, MIM# 125250; Mode of inheritance: BOTH monoallelic and biallelic (but BIALLELIC mutations cause a more SEVERE disease form), autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.442 | OPA1 | David Amor reviewed gene: OPA1: Rating: RED; Mode of pathogenicity: None; Publications: ; Phenotypes: Optic atrophy 1; Mode of inheritance: MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.277 | SMN1 | Zornitza Stark Phenotypes for gene: SMN1 were changed from Spinal muscular atrophy type 1, 253300; Spinal muscular atrophy type 2, 253550; Spinal muscular atrophy type 3, 253400 to Spinal muscular atrophy type 1, MIM#253300 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.276 | SMN1 | Zornitza Stark reviewed gene: SMN1: Rating: GREEN; Mode of pathogenicity: None; Publications: ; Phenotypes: Spinal muscular atrophy-1, MIM# 253300; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.270 | CBS |
Zornitza Stark changed review comment from: Well established gene-disease association. Multi-system disorder, onset in infancy. In general, individuals appear normal at birth but have a progressive disease course if untreated. Clinical features typically manifest in the first or second decade of life. Intellectual disability may be the first recognizable sign and may present as developmental delay after the first to second year of life. Myopia typically occurs after age one with the majority of untreated individuals developing ectopia lentis by age 8. Roughly half of patients show signs of osteoporosis by their teens. Cerebrovascular events typically manifest during young adulthood, though they have been reported earlier. Thromboembolism is the major cause of early death and morbidity. Among B₆-responsive individuals, a vascular event in adolescence or adulthood is often the presenting feature. Treatment: vitamin B6 (pyridoxine), methionine-restricted diet, folate, vitamin B12, betaine. Management guidelines PMID 27778219. Non-genetic confirmatory testing: plasma total homocysteine and plasma amino acids Paediatric actionable gene by ClinGen.; to: Well established gene-disease association. Multi-system disorder, onset in infancy. In general, individuals appear normal at birth but have a progressive disease course if untreated. Clinical features typically manifest in the first or second decade of life. Intellectual disability may be the first recognizable sign and may present as developmental delay after the first to second year of life. Myopia typically occurs after age one with the majority of untreated individuals developing ectopia lentis by age 8. Roughly half of patients show signs of osteoporosis by their teens. Cerebrovascular events typically manifest during young adulthood, though they have been reported earlier. Thromboembolism is the major cause of early death and morbidity. Among B₆-responsive individuals, a vascular event in adolescence or adulthood is often the presenting feature. Treatment: vitamin B6 (pyridoxine), methionine-restricted diet, folate, vitamin B12, betaine. Management guidelines PMID 27778219. Non-genetic confirmatory testing: plasma total homocysteine and plasma amino acids Paediatric actionable gene by ClinGen. Note excluded from reproductive carrier screening tests due to poor mappability, for review. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.229 | MBTPS2 | David Amor reviewed gene: MBTPS2: Rating: RED; Mode of pathogenicity: None; Publications: ; Phenotypes: IFAP syndrome: ichthyosis follicularis with atrichia and photophobia (IFAP syndrome); Mode of inheritance: X-LINKED: hemizygous mutation in males, monoallelic mutations in females may cause disease (may be less severe, later onset than males) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.222 | LDLR |
Zornitza Stark changed review comment from: ClinGen: 'strong actionability' in paediatric patients. For review as clinical manifestations are typically in adulthood. Statin therapy is recommended to be initiated as early as 8-12 years of age. Elevated LDL-C levels can be detected from infancy and strongly predispose patients with FH to progressive atherosclerosis throughout childhood and premature CVD in adulthood. Although complications of atherosclerosis occur most commonly in individuals aged >50, the pathophysiological processes begin in childhood and are affected by additional risk factors: hypertension, diabetes, smoking, obesity, poor diet, and physical inactivity. By 12 years of age, children with FH have significant thickening of the carotid intima-media, and by 18 years have coronary stenosis. In natural history studies, 50% of males and 25% of females with FH develop clinical CVD by age 50 years, but up to 10% can have severe premature CVD by 40 years of age. On average, individuals with HeFH experience their first coronary event at age 42, 20 years younger than the general population. Statins have changed the prognosis of FH such that the rates of cardiovascular (CV) events are equal to the general population after 10 years of treatment.; to: ClinGen: 'strong actionability' in paediatric patients. For review as clinical manifestations are typically in adulthood. Statin therapy is recommended to be initiated as early as 8-12 years of age. However, there is also a severe, bi-allelic form with onset in early childhood. Elevated LDL-C levels can be detected from infancy and strongly predispose patients with FH to progressive atherosclerosis throughout childhood and premature CVD in adulthood. Although complications of atherosclerosis occur most commonly in individuals aged >50, the pathophysiological processes begin in childhood and are affected by additional risk factors: hypertension, diabetes, smoking, obesity, poor diet, and physical inactivity. By 12 years of age, children with FH have significant thickening of the carotid intima-media, and by 18 years have coronary stenosis. In natural history studies, 50% of males and 25% of females with FH develop clinical CVD by age 50 years, but up to 10% can have severe premature CVD by 40 years of age. On average, individuals with HeFH experience their first coronary event at age 42, 20 years younger than the general population. Statins have changed the prognosis of FH such that the rates of cardiovascular (CV) events are equal to the general population after 10 years of treatment. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.195 | BICD2 | Zornitza Stark Phenotypes for gene: BICD2 were changed from Congenital spinal muscular atrophy to Spinal muscular atrophy, lower extremity-predominant, 2A, autosomal dominant, MIM# 615290; MONDO:0014121; Spinal muscular atrophy, lower extremity-predominant, 2B, autosomal dominant, MIM# 618291; Neurodevelopmental disorder (MONDO#0700092), BICD2-related | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.191 | BICD2 | Zornitza Stark reviewed gene: BICD2: Rating: RED; Mode of pathogenicity: None; Publications: 23664116, 23664119, 23664120, 27751653, 28635954, 30054298, 29528393, 35896821; Phenotypes: Spinal muscular atrophy, lower extremity-predominant, 2A, autosomal dominant, MIM# 615290, MONDO:0014121, Spinal muscular atrophy, lower extremity-predominant, 2B, autosomal dominant, MIM# 618291, Neurodevelopmental disorder (MONDO#0700092), BICD2-related; Mode of inheritance: BOTH monoallelic and biallelic, autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.161 | ATP7A |
Zornitza Stark changed review comment from: Well established gene-disease association. ATP7A-related copper transport disorders are classically separated in three pathologies according to their severity, all inherited in an X-linked recessive manner: Menkes disease (MD, OMIM #309400) which represent more than 90% of cases; occipital Horn Syndrome (OHS, OMIM #304150) and ATP7A-related distal motor neuropathy also named X-linked distal spinal muscular atrophy-3 (SMAX3, OMIM #300489). Although there is no clear cut correlation between Cu and ceruloplasmin levels in ATP7A related disorders, these three entities probably represent a continuum partly depending on residual functional ATP7A protein. Menkes disease typically presents in infancy, and if untreated is fatal. Typical age at diagnosis is ~8 months. Females are typically asymptomatic. In Australia, the birth incidence of MD is reported to be much higher (1/40,000-100,000 cf 1 in 300,000 elsewhere), which may be due to a founder effect Treatment: subcutaneous injections of copper histidine or copper chloride ClinGen has assessed as moderate evidence for actionability. Neonatal treatment with subcutaneous copper-histidine (initiated before 30 days of life) is recommended for asymptomatic males with a diagnosis of MD, but is not recommended for symptomatic boys or after 30 days of life. Treatment should be continued indefinitely. In an open-label clinical trial, 12 patients with MD treated with copper-histidine within 22 days of life had 92% survival after a mean follow-up of 4.6 years compared to 13% in a historical control group of 15 patients treated after a late diagnosis (mean age at diagnosis: 163 ± 113 days, range: 42 to 390). Two of the 12 patients with earlier treatment had normal neurological development. A second open-label trial of 35 presymptomatic patients receiving copper-histidine at less than a month of age reported significant improvement of four major neurodevelopmental (gross motor, fine motor/adaptive, personal/social, and language) domains and a non-significant lower mortality (28.5% vs 50%) at age of 3 years (or age of death) compared to 22 patients treated later and after onset of symptoms.; to: Well established gene-disease association. ATP7A-related copper transport disorders are classically separated in three pathologies according to their severity, all inherited in an X-linked recessive manner: Menkes disease (MD, OMIM #309400) which represent more than 90% of cases; occipital Horn Syndrome (OHS, OMIM #304150) and ATP7A-related distal motor neuropathy also named X-linked distal spinal muscular atrophy-3 (SMAX3, OMIM #300489). Although there is no clear cut correlation between Cu and ceruloplasmin levels in ATP7A related disorders, these three entities probably represent a continuum partly depending on residual functional ATP7A protein. Menkes disease typically presents in infancy, and if untreated is fatal. Typical age at diagnosis is ~8 months. Females are typically asymptomatic. In Australia, the birth incidence of MD is reported to be much higher (1/40,000-100,000 cf 1 in 300,000 elsewhere), which may be due to a founder effect. Non-genetic confirmatory testing: serum ceruloplasmin and copper, plasma catechols Treatment: subcutaneous injections of copper histidine or copper chloride ClinGen has assessed as moderate evidence for actionability. Neonatal treatment with subcutaneous copper-histidine (initiated before 30 days of life) is recommended for asymptomatic males with a diagnosis of MD, but is not recommended for symptomatic boys or after 30 days of life. Treatment should be continued indefinitely. In an open-label clinical trial, 12 patients with MD treated with copper-histidine within 22 days of life had 92% survival after a mean follow-up of 4.6 years compared to 13% in a historical control group of 15 patients treated after a late diagnosis (mean age at diagnosis: 163 ± 113 days, range: 42 to 390). Two of the 12 patients with earlier treatment had normal neurological development. A second open-label trial of 35 presymptomatic patients receiving copper-histidine at less than a month of age reported significant improvement of four major neurodevelopmental (gross motor, fine motor/adaptive, personal/social, and language) domains and a non-significant lower mortality (28.5% vs 50%) at age of 3 years (or age of death) compared to 22 patients treated later and after onset of symptoms. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.160 | ATRX | Zornitza Stark Marked gene: ATRX as ready | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.160 | ATRX | Zornitza Stark Gene: atrx has been classified as Red List (Low Evidence). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.160 | ATRX | Zornitza Stark Phenotypes for gene: ATRX were changed from Alpha-thalassemia/mental retardation syndrome to Alpha-thalassemia/mental retardation syndrome, MIM# 301040; Intellectual disability-hypotonic facies syndrome, X-linked, MIM# 309580 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.159 | ATRX | Zornitza Stark Classified gene: ATRX as Red List (low evidence) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.159 | ATRX | Zornitza Stark Gene: atrx has been classified as Red List (Low Evidence). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.158 | ATRX | Zornitza Stark reviewed gene: ATRX: Rating: RED; Mode of pathogenicity: None; Publications: ; Phenotypes: Alpha-thalassemia/mental retardation syndrome, MIM# 301040, Intellectual disability-hypotonic facies syndrome, X-linked, MIM# 309580; Mode of inheritance: X-LINKED: hemizygous mutation in males, biallelic mutations in females | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.70 | ALG14 | Zornitza Stark Phenotypes for gene: ALG14 were changed from Myasthenic syndrome, congenital, 15, without tubular aggregates, MIM#616227 to Myasthenic syndrome, congenital, 15, without tubular aggregates 616227; Intellectual developmental disorder with epilepsy, behavioral abnormalities, and coarse facies (IDDEBF), MIM#619031; Myopathy, epilepsy, and progressive cerebral atrophy, MIM# 619036; Disorder of N-glycosylation | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.68 | ALG14 | Zornitza Stark reviewed gene: ALG14: Rating: RED; Mode of pathogenicity: None; Publications: ; Phenotypes: Myasthenic syndrome, congenital, 15, without tubular aggregates 616227, Intellectual developmental disorder with epilepsy, behavioral abnormalities, and coarse facies (IDDEBF), MIM#619031, Myopathy, epilepsy, and progressive cerebral atrophy, MIM# 619036, Disorder of N-glycosylation; Mode of inheritance: BIALLELIC, autosomal or pseudoautosomal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.0 | VPS53 |
Zornitza Stark gene: VPS53 was added gene: VPS53 was added to gNBS. Sources: Expert Review Red,BabySeq Category C gene Mode of inheritance for gene: VPS53 was set to BIALLELIC, autosomal or pseudoautosomal Phenotypes for gene: VPS53 were set to Progressive cerebello-cerebral atrophy |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.0 | UBA1 |
Zornitza Stark gene: UBA1 was added gene: UBA1 was added to gNBS. Sources: Expert Review Red,BabySeq Category C gene Mode of inheritance for gene: UBA1 was set to X-LINKED: hemizygous mutation in males, biallelic mutations in females Phenotypes for gene: UBA1 were set to Spinal muscular atrophy, X-linked infantile |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.0 | SCN2B |
Zornitza Stark gene: SCN2B was added gene: SCN2B was added to gNBS. Sources: Expert Review Red,BabySeq Category C gene Mode of inheritance for gene: SCN2B was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Phenotypes for gene: SCN2B were set to Atrial fibrillation |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.0 | RFX6 |
Zornitza Stark gene: RFX6 was added gene: RFX6 was added to gNBS. Sources: Expert Review Red,BabySeq Category C gene Mode of inheritance for gene: RFX6 was set to BIALLELIC, autosomal or pseudoautosomal Phenotypes for gene: RFX6 were set to Diabetes, neonatal, with intestinal atresia |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.0 | OPA3 |
Zornitza Stark gene: OPA3 was added gene: OPA3 was added to gNBS. Sources: Expert Review Red,BabySeq Category A gene,BabySeq Category C gene Mode of inheritance for gene: OPA3 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Phenotypes for gene: OPA3 were set to Optic atrophy 3 with cataract; 3-methylglutaconic aciduria, type III |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.0 | NUP155 |
Zornitza Stark gene: NUP155 was added gene: NUP155 was added to gNBS. Sources: Expert Review Red,BabySeq Category C gene Mode of inheritance for gene: NUP155 was set to BIALLELIC, autosomal or pseudoautosomal Phenotypes for gene: NUP155 were set to Atrial fibrillation |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.0 | NPPA |
Zornitza Stark gene: NPPA was added gene: NPPA was added to gNBS. Sources: Expert Review Red,BabySeq Category C gene Mode of inheritance for gene: NPPA was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Phenotypes for gene: NPPA were set to Atrial fibrillation |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.0 | MYH6 |
Zornitza Stark gene: MYH6 was added gene: MYH6 was added to gNBS. Sources: Expert Review Red,BabySeq Category C gene Mode of inheritance for gene: MYH6 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Phenotypes for gene: MYH6 were set to Cardiomyopathy, dilated; Cardiomyopathy, familial hypertrophic; Atrial septal defect |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.0 | KCNE5 |
Zornitza Stark gene: KCNE5 was added gene: KCNE5 was added to gNBS. Sources: Expert Review Red,BabySeq Category C gene Mode of inheritance for gene: KCNE5 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Phenotypes for gene: KCNE5 were set to Atrial fibrillation |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.0 | GATA6 |
Zornitza Stark gene: GATA6 was added gene: GATA6 was added to gNBS. Sources: Expert Review Red,BabySeq Category C gene Mode of inheritance for gene: GATA6 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Phenotypes for gene: GATA6 were set to Atrial fibrillation |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.0 | GATA5 |
Zornitza Stark gene: GATA5 was added gene: GATA5 was added to gNBS. Sources: Expert Review Red,BabySeq Category C gene Mode of inheritance for gene: GATA5 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Phenotypes for gene: GATA5 were set to Familial atrial fibrillation |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.0 | CRELD1 |
Zornitza Stark gene: CRELD1 was added gene: CRELD1 was added to gNBS. Sources: Expert Review Red,BabySeq Category C gene Mode of inheritance for gene: CRELD1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Phenotypes for gene: CRELD1 were set to Cardiac atrioventricular septal defect |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.0 | CACNA1D |
Zornitza Stark Source Expert Review Red was added to CACNA1D. Source BabySeq Category C gene was added to CACNA1D. Mode of inheritance for gene CACNA1D was changed from MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted to BIALLELIC, autosomal or pseudoautosomal Added phenotypes Sinoatrial node dysfunction and deafness for gene: CACNA1D Rating Changed from Green List (high evidence) to Red List (low evidence) |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.0 | ATR |
Zornitza Stark gene: ATR was added gene: ATR was added to gNBS. Sources: Expert Review Red,BabySeq Category C gene Mode of inheritance for gene: ATR was set to BIALLELIC, autosomal or pseudoautosomal Phenotypes for gene: ATR were set to Seckel syndrome |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.0 | ATN1 |
Zornitza Stark gene: ATN1 was added gene: ATN1 was added to gNBS. Sources: Expert Review Red,BabySeq Category C gene Mode of inheritance for gene: ATN1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Phenotypes for gene: ATN1 were set to Dentatorubral-pallidoluysian atrophy 1 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.0 | ASNS |
Zornitza Stark gene: ASNS was added gene: ASNS was added to gNBS. Sources: Expert Review Red,BabySeq Category C gene Mode of inheritance for gene: ASNS was set to BIALLELIC, autosomal or pseudoautosomal Phenotypes for gene: ASNS were set to Microcephaly, intellectual disability, cerebral atrophy & intractable seizures |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.0 | ACTC1 |
Zornitza Stark gene: ACTC1 was added gene: ACTC1 was added to gNBS. Sources: Expert Review Red,BabySeq Category B gene,BabySeq Category C gene Mode of inheritance for gene: ACTC1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Phenotypes for gene: ACTC1 were set to Atrial septal defect; Cardiomyopathy, familial hypertrophic; Left ventricular noncompaction; Cardiomyopathy, dilated |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.0 | ABCC9 |
Zornitza Stark gene: ABCC9 was added gene: ABCC9 was added to gNBS. Sources: BabySeq Category B gene,Expert Review Red,BabySeq Category A gene,BabySeq Category C gene Mode of inheritance for gene: ABCC9 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Phenotypes for gene: ABCC9 were set to Atrial fibrillation, familial; Cardiomyopathy, dilated; Hypertrichotic osteochondrodysplasia |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.0 | KCNA5 |
Zornitza Stark gene: KCNA5 was added gene: KCNA5 was added to gNBS. Sources: Expert Review Amber,BabySeq Category B gene Mode of inheritance for gene: KCNA5 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Phenotypes for gene: KCNA5 were set to Atrial fibrillation |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.0 | GJA5 |
Zornitza Stark gene: GJA5 was added gene: GJA5 was added to gNBS. Sources: Expert Review Amber,BabySeq Category B gene Mode of inheritance for gene: GJA5 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Phenotypes for gene: GJA5 were set to Atrial fibrillation |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.0 | TTC7A |
Zornitza Stark gene: TTC7A was added gene: TTC7A was added to gNBS. Sources: BeginNGS,BabySeq Category A gene,Expert Review Green Mode of inheritance for gene: TTC7A was set to BIALLELIC, autosomal or pseudoautosomal Phenotypes for gene: TTC7A were set to Immunodeficiency, combined, with intestinal atresias, MIM#243150 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.0 | SMN1 |
Zornitza Stark gene: SMN1 was added gene: SMN1 was added to gNBS. Sources: BeginNGS,BabySeq Category A gene,Expert Review Green Mode of inheritance for gene: SMN1 was set to BIALLELIC, autosomal or pseudoautosomal Phenotypes for gene: SMN1 were set to Spinal muscular atrophy type 1, 253300; Spinal muscular atrophy type 2, 253550; Spinal muscular atrophy type 3, 253400 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.0 | OPA1 |
Zornitza Stark gene: OPA1 was added gene: OPA1 was added to gNBS. Sources: BabySeq Category A gene,Expert Review Green Mode of inheritance for gene: OPA1 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Phenotypes for gene: OPA1 were set to Optic atrophy 1 |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.0 | ITGB4 |
Zornitza Stark gene: ITGB4 was added gene: ITGB4 was added to gNBS. Sources: BabySeq Category A gene,Expert Review Green Mode of inheritance for gene: ITGB4 was set to BIALLELIC, autosomal or pseudoautosomal Phenotypes for gene: ITGB4 were set to Epidermolysis bullosa, junctional, with pyloric atresia |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.0 | IGHMBP2 |
Zornitza Stark gene: IGHMBP2 was added gene: IGHMBP2 was added to gNBS. Sources: BabySeq Category A gene,Expert Review Green Mode of inheritance for gene: IGHMBP2 was set to BIALLELIC, autosomal or pseudoautosomal Phenotypes for gene: IGHMBP2 were set to Spinal muscular atrophy with respiratory distress |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.0 | BICD2 |
Zornitza Stark gene: BICD2 was added gene: BICD2 was added to gNBS. Sources: BabySeq Category A gene,Expert Review Green Mode of inheritance for gene: BICD2 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Phenotypes for gene: BICD2 were set to Congenital spinal muscular atrophy |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BabyScreen+ newborn screening v0.0 | ATRX |
Zornitza Stark gene: ATRX was added gene: ATRX was added to gNBS. Sources: BabySeq Category A gene,Expert Review Green Mode of inheritance for gene: ATRX was set to X-LINKED: hemizygous mutation in males, biallelic mutations in females Phenotypes for gene: ATRX were set to Alpha-thalassemia/mental retardation syndrome |