Intellectual disability syndromic and non-syndromic
Gene: CUL3 Green List (high evidence)Green List (high evidence)
Mode of inheritance
MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Phenotypes
Neurodevelopmental disorder with or without autism or seizures, MIM# 619239
Green List (high evidence)
Please consider inclusion with amber / green rating.
--
Nakashima et al (2020 - PMID:32341456) provide clinical details on 3 unrelated individuals with de novo CUL3 variants.
Features included DD, variable degrees of ID (P1: severe, P3: mild, P2: NA although he displayed motor and severe speech and language delay and had severe learning difficulties). Two out of three had intractable seizures (onset 2 - 6 months). One presented with congenital heart defects (ASD, PV stenosis) and another submucosal palatoschisis/bifid uvula. There were no facial dysmorphisms reported.
CUL3 encodes Cullin-3, a core piece of the E3 ubiquitin ligase complex, thus playing a role in the ubiquitin-proteasome system. [ https://ghr.nlm.nih.gov/gene/CUL3 ]. Germline variants in some other Cullin family genes (eg. CUL4B, CUL7) cause disorders with ID as a feature.
The 3 individuals reported by Nakashima had variable previous investigations (karyotype, CMA, metabolic testing) which were non-diagnostic. Singleton or trio exome sequencing identified 2 frameshift and 1 missense variant (NM_003590.4:c.854T>C / p.Val285Ala), further confirmed with Sanger sequencing. De novo occurrence was confirmed by analysis of microsatellite markers in an individual with singleton ES.
While the frameshift variants were presumed to lead to NMD (not studied), studies in HEK293T cells suggested that the Val285Ala reduced binding ability with KEAP1, possibly leading to instability of the Cullin-RING ligase (CRL) complex and impairment of the ubiquitin-proteasome system.
In OMIM, the phenotype associated with heterozygous CUL3 mutations is Pseudohypoaldosteronism type IIE (PHA2E - # 614496). As OMIM and Nakashima et al comment, PHA2E-associated variants are clustered around exon 9, most lead to skipping of exon 9 and produce an in-frame deletion of 57 aa in the cullin homology domain. Few (probably 3) missense variants in exon 9 have also been reported. Individuals with PHA2E do not display DD/ID and conversely individuals with NDD did not display features of PHA2E.
Nakashima et al summarize the phenotypes associated with 12 further de novo CUL3 variants in the literature with most pLOF ones detected in individuals with autism and/or developmental disorders and in few cases with congenital heart disease. Few additional missense variants and a stoploss one have been reported in individuals with NDD and one in SCZ.
Heterozygous Cul3 (/tissue-specific) deletion in mice resulted in autism-like behavior. Cul3 deficient mice also demonstrated NMDAR hypofunction and decreased spine density. [PMIDs cited : 31455858, 31780330]
Overall haploinsufficiency is favored as the underlying mechanism of variants associated with NDD. Nakashima et al comment that the pathogenesis of missense variants remains unknown and/or that a dominant-negative effect on CRL may be possible.
Studies on larger cohorts reporting on individuals with relevant phenotypes due to de novo CUL3 variants (eg. DDD study - PMID: 28135719, Lelieveld et al - PMID: 27479843), are summarized in denovo-db (after filtering for coding variants):
http://denovo-db.gs.washington.edu/denovo-db/QueryVariantServlet?searchBy=Gene&target=cul3
Overall, this gene can be considered for inclusion in the ID (amber/green), epilepsy (amber) and/or ASD panels.
Sources: LiteratureCreated: 8 May 2020, 8:57 a.m.
Mode of inheritance
MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown
Phenotypes
Global developmental delay; Intellectual disability; Seizures; Abnormality of cardiovascular system morphology; Abnormality of the palate; Pseudohypoaldosteronism, type IIE - MIM #614496
Publications
Phenotypes for gene: CUL3 were changed from Global developmental delay; Intellectual disability; Seizures; Abnormality of cardiovascular system morphology; Abnormality of the palate to Neurodevelopmental disorder with or without autism or seizures, MIM# 619239; Global developmental delay; Intellectual disability; Seizures; Abnormality of cardiovascular system morphology; Abnormality of the palate
Gene: cul3 has been classified as Green List (High Evidence).
Phenotypes for gene: CUL3 were changed from Global developmental delay; Intellectual disability; Seizures; Abnormality of cardiovascular system morphology; Abnormality of the palate; Pseudohypoaldosteronism, type IIE - MIM #614496 to Global developmental delay; Intellectual disability; Seizures; Abnormality of cardiovascular system morphology; Abnormality of the palate
Gene: cul3 has been classified as Green List (High Evidence).
gene: CUL3 was added gene: CUL3 was added to Intellectual disability syndromic and non-syndromic. Sources: Literature Mode of inheritance for gene: CUL3 was set to MONOALLELIC, autosomal or pseudoautosomal, imprinted status unknown Publications for gene: CUL3 were set to 32341456 Phenotypes for gene: CUL3 were set to Global developmental delay; Intellectual disability; Seizures; Abnormality of cardiovascular system morphology; Abnormality of the palate; Pseudohypoaldosteronism, type IIE - MIM #614496 Penetrance for gene: CUL3 were set to unknown Review for gene: CUL3 was set to GREEN
If promoting or demoting a gene, please provide comments to justify a decision to move it.
Genes included in a Genomics England gene panel for a rare disease category (green list) should fit the criteria A-E outlined below.
These guidelines were developed as a combination of the ClinGen DEFINITIVE evidence for a causal role of the gene in the disease(a), and the Developmental Disorder Genotype-Phenotype (DDG2P) CONFIRMED DD Gene evidence level(b) (please see the original references provided below for full details). These help provide a guideline for expert reviewers when assessing whether a gene should be on the green or the red list of a panel.
A. There are plausible disease-causing mutations(i) within, affecting or encompassing an interpretable functional region(ii) of this gene identified in multiple (>3) unrelated cases/families with the phenotype(iii).
OR
B. There are plausible disease-causing mutations(i) within, affecting or encompassing cis-regulatory elements convincingly affecting the expression of a single gene identified in multiple (>3) unrelated cases/families with the phenotype(iii).
OR
C. As definitions A or B but in 2 or 3 unrelated cases/families with the phenotype, with the addition of convincing bioinformatic or functional evidence of causation e.g. known inborn error of metabolism with mutation in orthologous gene which is known to have the relevant deficient enzymatic activity in other species; existence of an animal model which recapitulates the human phenotype.
AND
D. Evidence indicates that disease-causing mutations follow a Mendelian pattern of causation appropriate for reporting in a diagnostic setting(iv).
AND
E. No convincing evidence exists or has emerged that contradicts the role of the gene in the specified phenotype.
(i)Plausible disease-causing mutations: Recurrent de novo mutations convincingly affecting gene function. Rare, fully-penetrant mutations - relevant genotype never, or very rarely, seen in controls. (ii) Interpretable functional region: ORF in protein coding genes miRNA stem or loop. (iii) Phenotype: the rare disease category, as described in the eligibility statement. (iv) Intermediate penetrance genes should not be included.
It’s assumed that loss-of-function variants in this gene can cause the disease/phenotype unless an exception to this rule is known. We would like to collect information regarding exceptions. An example exception is the PCSK9 gene, where loss-of-function variants are not relevant for a hypercholesterolemia phenotype as they are associated with increased LDL-cholesterol uptake via LDLR (PMID: 25911073).
If a curated set of known-pathogenic variants is available for this gene-phenotype, please contact us at panelapp@genomicsengland.co.uk
We classify loss-of-function variants as those with the following Sequence Ontology (SO) terms:
Term descriptions can be found on the PanelApp homepage and Ensembl.
If you are submitting this evaluation on behalf of a clinical laboratory please indicate whether you report variants in this gene as part of your current diagnostic practice by checking the box
Standardised terms were used to represent the gene-disease mode of inheritance, and were mapped to commonly used terms from the different sources. Below each of the terms is described, along with the equivalent commonly-used terms.
A variant on one allele of this gene can cause the disease, and imprinting has not been implicated.
A variant on the paternally-inherited allele of this gene can cause the disease, if the alternate allele is imprinted (function muted).
A variant on the maternally-inherited allele of this gene can cause the disease, if the alternate allele is imprinted (function muted).
A variant on one allele of this gene can cause the disease. This is the default used for autosomal dominant mode of inheritance where no knowledge of the imprinting status of the gene required to cause the disease is known. Mapped to the following commonly used terms from different sources: autosomal dominant, dominant, AD, DOMINANT.
A variant on both alleles of this gene is required to cause the disease. Mapped to the following commonly used terms from different sources: autosomal recessive, recessive, AR, RECESSIVE.
The disease can be caused by a variant on one or both alleles of this gene. Mapped to the following commonly used terms from different sources: autosomal recessive or autosomal dominant, recessive or dominant, AR/AD, AD/AR, DOMINANT/RECESSIVE, RECESSIVE/DOMINANT.
A variant on one allele of this gene can cause the disease, however a variant on both alleles of this gene can result in a more severe form of the disease/phenotype.
A variant in this gene can cause the disease in males as they have one X-chromosome allele, whereas a variant on both X-chromosome alleles is required to cause the disease in females. Mapped to the following commonly used term from different sources: X-linked recessive.
A variant in this gene can cause the disease in males as they have one X-chromosome allele. A variant on one allele of this gene may also cause the disease in females, though the disease/phenotype may be less severe and may have a later-onset than is seen in males. X-linked inactivation and mosaicism in different tissues complicate whether a female presents with the disease, and can change over their lifetime. This term is the default setting used for X-linked genes, where it is not known definitately whether females require a variant on each allele of this gene in order to be affected. Mapped to the following commonly used terms from different sources: X-linked dominant, x-linked, X-LINKED, X-linked.
The gene is in the mitochondrial genome and variants within this can cause this disease, maternally inherited. Mapped to the following commonly used term from different sources: Mitochondrial.
Mapped to the following commonly used terms from different sources: Unknown, NA, information not provided.
For example, if the mode of inheritance is digenic, please indicate this in the comments and which other gene is involved.