Mendeliome
Gene: PDGFRA Green List (high evidence)Red List (low evidence)
1x family with AD coloboma
Also presented with global developmental delay, autistic behaviour, delayed gross motor development
zebrafish KO modelCreated: 5 May 2022, 1:46 a.m. | Last Modified: 5 May 2022, 1:52 a.m.
Panel Version: 0.13795
Mode of inheritance
MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Phenotypes
coloboma MONDO#0001476, PDGFRA-related
Publications
Variants in this GENE are reported as part of current diagnostic practice
Green List (high evidence)
Six unrelated families reported with heterozygous germline variants associated with familial GIST and/or inflammatory fibroid polyps - IFP (benign lesions caused by excessive tissue proliferation and inflammatory cell infiltration into the lumen of the GI tract). Note that reported individuals diagnosed as adults. One individual reported with diagnosis of gastric mass/polyps age 22 (in 1977) raising the possibility of pre-symptomatic disease onset in adolescence. Green PanelApp England in the following panels: tumour predisposition - childhood onset; inherited predisposition to GIST; sarcoma cancer susceptibility.
---
PMID 34107389 Hodan et al 2021 - report a 35 yo F with jejunal IFP and a heterozygous germline missense PDGFRA variant (c.1664A>G p.Y555C) . The variant segregated with 3 relatives with confirmed IFPs. Two obligate carriers were reported to have had a similar phenotype while at least one obligate male carrier had no reported history of IFPs. This variant was also reported in an unrelated family with multiple IFPs in 2006.
PMID 29486293 Manley et al 2018 - proband is a 50 yo M with multiple ileal intusussceptions and IFPs and GIST. Heterozygous D846V germline variant identified. Variant identified in daughter and 2 siblings. Coarser face, coarser skin, broader hands and feet, unexplained premature loss of teeth requiring dentures in their 40s described in relatives with the variant, no polyps or tumour identified in screened family members. Pdgfra +/K mutant mice recapitulated the human phenotype. Mice with the constitutively activated mutant PDGFRA shown to have diffuse expansion of the gastrointestinal submucosa, which exhibits an increased number of spindled fibroblast-like cells and marked collagen deposition. Mutant mice also develop intestinal polyps morphologically similar to IFPs. The Pdgfra +/K mice also exhibit thickened skin due to excess collagen deposition within the dermis and subcutaneous tissues.
PMID 25975287 Ricci et al 2015 - report a family with het germline P653L PDGFRA missense variant. The proband was a 67 yo M with multiple intra-abdominal GIST and gastric/colonic inflammatory fibroid polyps. Multiple adult relatives (youngest age 31) were diagnosed with IFPs/fibrous tumours with the variant segregating with disease.
PMID: 18670346 Carney et al 2008 and PMID: 17566086 Pasini et al 2007 - heterozygous germline PDGFRA mutation (V561D) in an individual with GIST and multiple polyps, diagnosed initially aged 22 with multiple GIST/polyps. No other relatives available for genotyping and no other significant family history reported.
PMID: 17087943 de Raedt et al 2006 - heterozygous PDGFRA(Y555C) variant reported in a family with multiple relatives affected by IFP, including one death from secondary bowel obstruction age 35.
PMID: 14699510 Chompret et al 2004 - Heterozygous c.2675G>T D846Y germline variant detected in a French family with 5 relatives developing adult-onset GIST, variant segregated with disease.
--
Gain of function somatic variants associated with sporadic GIST. Somatic chromosomal rearrangements resulting in PDGFRA and FIP1L1 gene fusion associated with idiopathic hypereosinophilic syndrome.Created: 26 Apr 2022, 2:50 a.m. | Last Modified: 26 Apr 2022, 3:12 a.m.
Panel Version: 0.13297
Mode of inheritance
MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Phenotypes
Gastrointestinal stromal tumor/GIST-plus syndrome, somatic or familial - MIM#175510
Publications
Phenotypes for gene: PDGFRA were changed from Gastrointestinal stromal tumor/GIST-plus syndrome, somatic or familial - MIM#175510 to Gastrointestinal stromal tumor/GIST-plus syndrome, somatic or familial - MIM#175510; coloboma MONDO#0001476, PDGFRA-related
Publications for gene: PDGFRA were set to 14699510; 17087943; 25975287; 29486293; 33449152; 34107389; 17566086; 18670346
Gene: pdgfra has been classified as Green List (High Evidence).
Phenotypes for gene: PDGFRA were changed from to Gastrointestinal stromal tumor/GIST-plus syndrome, somatic or familial - MIM#175510
Publications for gene: PDGFRA were set to
Mode of inheritance for gene: PDGFRA was changed from Unknown to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
gene: PDGFRA was added gene: PDGFRA was added to Mendeliome_VCGS. Sources: Expert Review Green,Victorian Clinical Genetics Services Mode of inheritance for gene: PDGFRA was set to Unknown
If promoting or demoting a gene, please provide comments to justify a decision to move it.
Genes included in a Genomics England gene panel for a rare disease category (green list) should fit the criteria A-E outlined below.
These guidelines were developed as a combination of the ClinGen DEFINITIVE evidence for a causal role of the gene in the disease(a), and the Developmental Disorder Genotype-Phenotype (DDG2P) CONFIRMED DD Gene evidence level(b) (please see the original references provided below for full details). These help provide a guideline for expert reviewers when assessing whether a gene should be on the green or the red list of a panel.
A. There are plausible disease-causing mutations(i) within, affecting or encompassing an interpretable functional region(ii) of this gene identified in multiple (>3) unrelated cases/families with the phenotype(iii).
OR
B. There are plausible disease-causing mutations(i) within, affecting or encompassing cis-regulatory elements convincingly affecting the expression of a single gene identified in multiple (>3) unrelated cases/families with the phenotype(iii).
OR
C. As definitions A or B but in 2 or 3 unrelated cases/families with the phenotype, with the addition of convincing bioinformatic or functional evidence of causation e.g. known inborn error of metabolism with mutation in orthologous gene which is known to have the relevant deficient enzymatic activity in other species; existence of an animal model which recapitulates the human phenotype.
AND
D. Evidence indicates that disease-causing mutations follow a Mendelian pattern of causation appropriate for reporting in a diagnostic setting(iv).
AND
E. No convincing evidence exists or has emerged that contradicts the role of the gene in the specified phenotype.
(i)Plausible disease-causing mutations: Recurrent de novo mutations convincingly affecting gene function. Rare, fully-penetrant mutations - relevant genotype never, or very rarely, seen in controls. (ii) Interpretable functional region: ORF in protein coding genes miRNA stem or loop. (iii) Phenotype: the rare disease category, as described in the eligibility statement. (iv) Intermediate penetrance genes should not be included.
It’s assumed that loss-of-function variants in this gene can cause the disease/phenotype unless an exception to this rule is known. We would like to collect information regarding exceptions. An example exception is the PCSK9 gene, where loss-of-function variants are not relevant for a hypercholesterolemia phenotype as they are associated with increased LDL-cholesterol uptake via LDLR (PMID: 25911073).
If a curated set of known-pathogenic variants is available for this gene-phenotype, please contact us at panelapp@genomicsengland.co.uk
We classify loss-of-function variants as those with the following Sequence Ontology (SO) terms:
Term descriptions can be found on the PanelApp homepage and Ensembl.
If you are submitting this evaluation on behalf of a clinical laboratory please indicate whether you report variants in this gene as part of your current diagnostic practice by checking the box
Standardised terms were used to represent the gene-disease mode of inheritance, and were mapped to commonly used terms from the different sources. Below each of the terms is described, along with the equivalent commonly-used terms.
A variant on one allele of this gene can cause the disease, and imprinting has not been implicated.
A variant on the paternally-inherited allele of this gene can cause the disease, if the alternate allele is imprinted (function muted).
A variant on the maternally-inherited allele of this gene can cause the disease, if the alternate allele is imprinted (function muted).
A variant on one allele of this gene can cause the disease. This is the default used for autosomal dominant mode of inheritance where no knowledge of the imprinting status of the gene required to cause the disease is known. Mapped to the following commonly used terms from different sources: autosomal dominant, dominant, AD, DOMINANT.
A variant on both alleles of this gene is required to cause the disease. Mapped to the following commonly used terms from different sources: autosomal recessive, recessive, AR, RECESSIVE.
The disease can be caused by a variant on one or both alleles of this gene. Mapped to the following commonly used terms from different sources: autosomal recessive or autosomal dominant, recessive or dominant, AR/AD, AD/AR, DOMINANT/RECESSIVE, RECESSIVE/DOMINANT.
A variant on one allele of this gene can cause the disease, however a variant on both alleles of this gene can result in a more severe form of the disease/phenotype.
A variant in this gene can cause the disease in males as they have one X-chromosome allele, whereas a variant on both X-chromosome alleles is required to cause the disease in females. Mapped to the following commonly used term from different sources: X-linked recessive.
A variant in this gene can cause the disease in males as they have one X-chromosome allele. A variant on one allele of this gene may also cause the disease in females, though the disease/phenotype may be less severe and may have a later-onset than is seen in males. X-linked inactivation and mosaicism in different tissues complicate whether a female presents with the disease, and can change over their lifetime. This term is the default setting used for X-linked genes, where it is not known definitately whether females require a variant on each allele of this gene in order to be affected. Mapped to the following commonly used terms from different sources: X-linked dominant, x-linked, X-LINKED, X-linked.
The gene is in the mitochondrial genome and variants within this can cause this disease, maternally inherited. Mapped to the following commonly used term from different sources: Mitochondrial.
Mapped to the following commonly used terms from different sources: Unknown, NA, information not provided.
For example, if the mode of inheritance is digenic, please indicate this in the comments and which other gene is involved.