Mendeliome
Gene: KIAA1161 Green List (high evidence)Green List (high evidence)
Gene name has been updated from KIA1161 to MYORG.
Homozygous and compound heterozygous of 9 different variants (missense, nonsense, insertion, deletions) found in the MYORG gene in 12 patients with basal ganglia calcifications from 6 unrelated Chinese families. Mouse knockout was generated, which showed brain calcifications. (Yao, XP. et al. (2018) PMID: 29910000).
French study: Homozygous and compound heterozygous variants in 11 unrelated families with PFBC. (6 sporadic cases and 5 families with 2 or 3 affected siblings). The authors conclude this gene causes a specific recognisable phenotype: initial dysarthria followed by cerebellar and pyramidal syndromes with akinetic-hypertonic syndrome; (ii) extensive calcifications encompassing the brainstem and more specifically the pons; and (iii) cerebellar atrophy. High clinical penetrance. Note: 3 of the fathers of the probands displayed non-diffuse calcifications, suggestive of a semi-dominant inheritance pattern with incomplete penetrance. (Grangeon L. et al. (2019) ; PMID: 31009047).Created: 23 Apr 2020, 9:03 a.m. | Last Modified: 23 Apr 2020, 9:03 a.m.
Panel Version: 0.2602
Mode of inheritance
BIALLELIC, autosomal or pseudoautosomal
Phenotypes
Basal ganglia calcification, idiopathic, 7, autosomal recessive (OMIM #618317); primary familial brain calcifications (PFBC); ataxia; dysarthria; cerebellar atrophy; akinetic-hypertonic syndrome
Publications
Green List (high evidence)
In a cohort study comprising 435 individuals with primary brain calcification, 38 individuals identified with mono-allelic variants in this gene, in addition to 14 with bi-allelic variants. Clinical and imaging penetrance of individuals with bi-allelic variants were 100%, whereas among individuals with heterozygous variants, penetrance of imaging phenotype was reduced to 73.7% (28 of 38) and clinical penetrance was much lower. Most (34 of 38) remained asymptomatic whereas 4 had symptoms of uncertain clinical significance (nonspecific depression, epilepsy and late-onset parkinsonism). Compared with individuals with biallelic MYORG variants, individuals with heterozygous variants had brain calcifications with much lower calcification scores (P < 2e-16). HGNC approved name is MYORG.Created: 22 Sep 2020, 11:48 p.m. | Last Modified: 22 Sep 2020, 11:48 p.m.
Panel Version: 0.4548
Total 9 families, but no functional evidence:
12 patients from 6 unrelated Chinese families reported by Yao et al. (2018) and homozygous or compound heterozygous mutations in the MYORG gene. Functional studies of the variants and studies of patient cells were not performed, but the presence of nonsense mutations suggested a loss of function.
1 Chinese woman identified with homozygous nonsense mutation in the MYORG gene, segregated with the disorder in the family. Functional studies of the variant and studies of patient cells were not performed.
2 unrelated Middle Eastern families with homozygous mutations in the MYORG gene, which segregated with the disorder in the families. Functional studies of the variants were not performed.
4 sibs from one Turkish family with homozygous missense mutation in the MYORG gene, which segregated with the disorder in the family. Functional studies of the variant and studies of patient cells were not performed.
Sources: LiteratureCreated: 14 Jan 2020, 7:26 a.m.
Mode of inheritance
BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Phenotypes
Basal ganglia calcification, idiopathic, 7, autosomal recessive; OMIM #618317
Publications
Phenotypes for gene: KIAA1161 were changed from Basal ganglia calcification, idiopathic, 7, autosomal recessive; OMIM #618317; primary familial brain calcifications (PFBC); ataxia; dysarthria; cerebellar atrophy; akinetic-hypertonic syndrome to Basal ganglia calcification, idiopathic, 7, MIM #618317; primary familial brain calcifications (PFBC); ataxia; dysarthria; cerebellar atrophy; akinetic-hypertonic syndrome
Publications for gene: KIAA1161 were set to 30656188; 30649222; 30460687; 29910000; 31009047
Mode of inheritance for gene: KIAA1161 was changed from BIALLELIC, autosomal or pseudoautosomal to BOTH monoallelic and biallelic, autosomal or pseudoautosomal
Tag new gene name tag was added to gene: KIAA1161.
Phenotypes for gene: KIAA1161 were changed from Basal ganglia calcification, idiopathic, 7, autosomal recessive; OMIM #618317 to Basal ganglia calcification, idiopathic, 7, autosomal recessive; OMIM #618317; primary familial brain calcifications (PFBC); ataxia; dysarthria; cerebellar atrophy; akinetic-hypertonic syndrome
Publications for gene: KIAA1161 were set to 30656188; 30649222; 30460687; 29910000
Gene: kiaa1161 has been classified as Green List (High Evidence).
Gene: kiaa1161 has been classified as Green List (High Evidence).
gene: KIAA1161 was added gene: KIAA1161 was added to Mendeliome_VCGS. Sources: Literature Mode of inheritance for gene: KIAA1161 was set to BIALLELIC, autosomal or pseudoautosomal Publications for gene: KIAA1161 were set to 30656188; 30649222; 30460687; 29910000 Phenotypes for gene: KIAA1161 were set to Basal ganglia calcification, idiopathic, 7, autosomal recessive; OMIM #618317 Review for gene: KIAA1161 was set to GREEN
If promoting or demoting a gene, please provide comments to justify a decision to move it.
Genes included in a Genomics England gene panel for a rare disease category (green list) should fit the criteria A-E outlined below.
These guidelines were developed as a combination of the ClinGen DEFINITIVE evidence for a causal role of the gene in the disease(a), and the Developmental Disorder Genotype-Phenotype (DDG2P) CONFIRMED DD Gene evidence level(b) (please see the original references provided below for full details). These help provide a guideline for expert reviewers when assessing whether a gene should be on the green or the red list of a panel.
A. There are plausible disease-causing mutations(i) within, affecting or encompassing an interpretable functional region(ii) of this gene identified in multiple (>3) unrelated cases/families with the phenotype(iii).
OR
B. There are plausible disease-causing mutations(i) within, affecting or encompassing cis-regulatory elements convincingly affecting the expression of a single gene identified in multiple (>3) unrelated cases/families with the phenotype(iii).
OR
C. As definitions A or B but in 2 or 3 unrelated cases/families with the phenotype, with the addition of convincing bioinformatic or functional evidence of causation e.g. known inborn error of metabolism with mutation in orthologous gene which is known to have the relevant deficient enzymatic activity in other species; existence of an animal model which recapitulates the human phenotype.
AND
D. Evidence indicates that disease-causing mutations follow a Mendelian pattern of causation appropriate for reporting in a diagnostic setting(iv).
AND
E. No convincing evidence exists or has emerged that contradicts the role of the gene in the specified phenotype.
(i)Plausible disease-causing mutations: Recurrent de novo mutations convincingly affecting gene function. Rare, fully-penetrant mutations - relevant genotype never, or very rarely, seen in controls. (ii) Interpretable functional region: ORF in protein coding genes miRNA stem or loop. (iii) Phenotype: the rare disease category, as described in the eligibility statement. (iv) Intermediate penetrance genes should not be included.
It’s assumed that loss-of-function variants in this gene can cause the disease/phenotype unless an exception to this rule is known. We would like to collect information regarding exceptions. An example exception is the PCSK9 gene, where loss-of-function variants are not relevant for a hypercholesterolemia phenotype as they are associated with increased LDL-cholesterol uptake via LDLR (PMID: 25911073).
If a curated set of known-pathogenic variants is available for this gene-phenotype, please contact us at panelapp@genomicsengland.co.uk
We classify loss-of-function variants as those with the following Sequence Ontology (SO) terms:
Term descriptions can be found on the PanelApp homepage and Ensembl.
If you are submitting this evaluation on behalf of a clinical laboratory please indicate whether you report variants in this gene as part of your current diagnostic practice by checking the box
Standardised terms were used to represent the gene-disease mode of inheritance, and were mapped to commonly used terms from the different sources. Below each of the terms is described, along with the equivalent commonly-used terms.
A variant on one allele of this gene can cause the disease, and imprinting has not been implicated.
A variant on the paternally-inherited allele of this gene can cause the disease, if the alternate allele is imprinted (function muted).
A variant on the maternally-inherited allele of this gene can cause the disease, if the alternate allele is imprinted (function muted).
A variant on one allele of this gene can cause the disease. This is the default used for autosomal dominant mode of inheritance where no knowledge of the imprinting status of the gene required to cause the disease is known. Mapped to the following commonly used terms from different sources: autosomal dominant, dominant, AD, DOMINANT.
A variant on both alleles of this gene is required to cause the disease. Mapped to the following commonly used terms from different sources: autosomal recessive, recessive, AR, RECESSIVE.
The disease can be caused by a variant on one or both alleles of this gene. Mapped to the following commonly used terms from different sources: autosomal recessive or autosomal dominant, recessive or dominant, AR/AD, AD/AR, DOMINANT/RECESSIVE, RECESSIVE/DOMINANT.
A variant on one allele of this gene can cause the disease, however a variant on both alleles of this gene can result in a more severe form of the disease/phenotype.
A variant in this gene can cause the disease in males as they have one X-chromosome allele, whereas a variant on both X-chromosome alleles is required to cause the disease in females. Mapped to the following commonly used term from different sources: X-linked recessive.
A variant in this gene can cause the disease in males as they have one X-chromosome allele. A variant on one allele of this gene may also cause the disease in females, though the disease/phenotype may be less severe and may have a later-onset than is seen in males. X-linked inactivation and mosaicism in different tissues complicate whether a female presents with the disease, and can change over their lifetime. This term is the default setting used for X-linked genes, where it is not known definitately whether females require a variant on each allele of this gene in order to be affected. Mapped to the following commonly used terms from different sources: X-linked dominant, x-linked, X-LINKED, X-linked.
The gene is in the mitochondrial genome and variants within this can cause this disease, maternally inherited. Mapped to the following commonly used term from different sources: Mitochondrial.
Mapped to the following commonly used terms from different sources: Unknown, NA, information not provided.
For example, if the mode of inheritance is digenic, please indicate this in the comments and which other gene is involved.