Mendeliome
Gene: ARHGAP35 Green List (high evidence)Green List (high evidence)
PMID 36178483: 12 patients with idiopathic hypogonadotropic hypogonadism. Rare protein-truncating variants (n = 5) and missense variants (n = 7) found in the RhoGAP domain of ARHGAP35 gene. Zebrafish modeling using gnrh3:egfp phenotype assessment showed that mutant larvae with deficient arhgap35a (predominant ARHGAP35 paralog in zebrafish brain), displayed decreased GnRH3-GFP+ neuronal area, a readout for IHH. In vitro GAP activity studies showed that 1 rare missense variant (Arg1284Trp) had decreased GAP activity.Created: 18 Feb 2023, 6:25 a.m. | Last Modified: 18 Feb 2023, 6:25 a.m.
Panel Version: 1.678
Mode of inheritance
MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Phenotypes
Hypogonadotropic hypogonadism, MONDO:0015770, ARHGAP35-related
Publications
Green List (high evidence)
PMID: 36450800
- ARHGAP35 variants were found in five individuals from four families with human developmental eye phenotypes. The affected individuals had anophthalmia, microphthalmia, coloboma and/or anterior segment dysgenesis disorders, together with variable non-ocular phenotypes in some families including renal, neurological, or cardiac anomalies.Created: 5 Jan 2023, 4:05 a.m. | Last Modified: 5 Jan 2023, 4:05 a.m.
Panel Version: 1.590
Mode of inheritance
MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Phenotypes
Developmental defect of the eye (MONDO:0020145), ARHGAP35-related
Publications
Green List (high evidence)
Internal VCGS case:
A de novo nonsense (NMD-predicted) variant found in a 1 year old with epilepsy, agenesis of corpus callosum, ventricular septal defect, cleft palate, ID, microcephaly and abnormal localization of kidneyCreated: 12 Mar 2022, 5:03 a.m. | Last Modified: 12 Mar 2022, 5:03 a.m.
Panel Version: 0.11301
Mode of inheritance
MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Phenotypes
neurodevelopmental disorder, ARHGAP35-related MONDO#0700092
Variants in this GENE are reported as part of current diagnostic practice
I don't know
Has been identified as a gene with significant de novo enrichment in a large trio developmental disorder study. 16 de novo variants (3 frameshift, 2 in-frame, 10 missense, 1 stopgain) identified in ~10,000 cases with developmental disorders (no other phenotype info provided).
Sources: LiteratureCreated: 31 Oct 2020, 6:14 a.m.
Mode of inheritance
MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted
Phenotypes
Developmental disorder
Publications
Phenotypes for gene: ARHGAP35 were changed from neurodevelopmental disorder, ARHGAP35-related MONDO#0700092; Developmental defect of the eye (MONDO:0020145), ARHGAP35-related to Hypogonadotropic hypogonadism, MONDO:0015770, ARHGAP35-related; neurodevelopmental disorder, ARHGAP35-related MONDO#0700092; Developmental defect of the eye (MONDO:0020145), ARHGAP35-related
Publications for gene: ARHGAP35 were set to 33057194; 36450800
Phenotypes for gene: ARHGAP35 were changed from neurodevelopmental disorder, ARHGAP35-related MONDO#0700092 to neurodevelopmental disorder, ARHGAP35-related MONDO#0700092; Developmental defect of the eye (MONDO:0020145), ARHGAP35-related
Publications for gene: ARHGAP35 were set to 33057194
Phenotypes for gene: ARHGAP35 were changed from Developmental disorder to neurodevelopmental disorder, ARHGAP35-related MONDO#0700092
Gene: arhgap35 has been classified as Green List (High Evidence).
Gene: arhgap35 has been classified as Green List (High Evidence).
Gene: arhgap35 has been classified as Amber List (Moderate Evidence).
Gene: arhgap35 has been classified as Amber List (Moderate Evidence).
gene: ARHGAP35 was added gene: ARHGAP35 was added to Mendeliome. Sources: Literature Mode of inheritance for gene: ARHGAP35 was set to MONOALLELIC, autosomal or pseudoautosomal, NOT imprinted Publications for gene: ARHGAP35 were set to 33057194 Phenotypes for gene: ARHGAP35 were set to Developmental disorder Review for gene: ARHGAP35 was set to AMBER
If promoting or demoting a gene, please provide comments to justify a decision to move it.
Genes included in a Genomics England gene panel for a rare disease category (green list) should fit the criteria A-E outlined below.
These guidelines were developed as a combination of the ClinGen DEFINITIVE evidence for a causal role of the gene in the disease(a), and the Developmental Disorder Genotype-Phenotype (DDG2P) CONFIRMED DD Gene evidence level(b) (please see the original references provided below for full details). These help provide a guideline for expert reviewers when assessing whether a gene should be on the green or the red list of a panel.
A. There are plausible disease-causing mutations(i) within, affecting or encompassing an interpretable functional region(ii) of this gene identified in multiple (>3) unrelated cases/families with the phenotype(iii).
OR
B. There are plausible disease-causing mutations(i) within, affecting or encompassing cis-regulatory elements convincingly affecting the expression of a single gene identified in multiple (>3) unrelated cases/families with the phenotype(iii).
OR
C. As definitions A or B but in 2 or 3 unrelated cases/families with the phenotype, with the addition of convincing bioinformatic or functional evidence of causation e.g. known inborn error of metabolism with mutation in orthologous gene which is known to have the relevant deficient enzymatic activity in other species; existence of an animal model which recapitulates the human phenotype.
AND
D. Evidence indicates that disease-causing mutations follow a Mendelian pattern of causation appropriate for reporting in a diagnostic setting(iv).
AND
E. No convincing evidence exists or has emerged that contradicts the role of the gene in the specified phenotype.
(i)Plausible disease-causing mutations: Recurrent de novo mutations convincingly affecting gene function. Rare, fully-penetrant mutations - relevant genotype never, or very rarely, seen in controls. (ii) Interpretable functional region: ORF in protein coding genes miRNA stem or loop. (iii) Phenotype: the rare disease category, as described in the eligibility statement. (iv) Intermediate penetrance genes should not be included.
It’s assumed that loss-of-function variants in this gene can cause the disease/phenotype unless an exception to this rule is known. We would like to collect information regarding exceptions. An example exception is the PCSK9 gene, where loss-of-function variants are not relevant for a hypercholesterolemia phenotype as they are associated with increased LDL-cholesterol uptake via LDLR (PMID: 25911073).
If a curated set of known-pathogenic variants is available for this gene-phenotype, please contact us at panelapp@genomicsengland.co.uk
We classify loss-of-function variants as those with the following Sequence Ontology (SO) terms:
Term descriptions can be found on the PanelApp homepage and Ensembl.
If you are submitting this evaluation on behalf of a clinical laboratory please indicate whether you report variants in this gene as part of your current diagnostic practice by checking the box
Standardised terms were used to represent the gene-disease mode of inheritance, and were mapped to commonly used terms from the different sources. Below each of the terms is described, along with the equivalent commonly-used terms.
A variant on one allele of this gene can cause the disease, and imprinting has not been implicated.
A variant on the paternally-inherited allele of this gene can cause the disease, if the alternate allele is imprinted (function muted).
A variant on the maternally-inherited allele of this gene can cause the disease, if the alternate allele is imprinted (function muted).
A variant on one allele of this gene can cause the disease. This is the default used for autosomal dominant mode of inheritance where no knowledge of the imprinting status of the gene required to cause the disease is known. Mapped to the following commonly used terms from different sources: autosomal dominant, dominant, AD, DOMINANT.
A variant on both alleles of this gene is required to cause the disease. Mapped to the following commonly used terms from different sources: autosomal recessive, recessive, AR, RECESSIVE.
The disease can be caused by a variant on one or both alleles of this gene. Mapped to the following commonly used terms from different sources: autosomal recessive or autosomal dominant, recessive or dominant, AR/AD, AD/AR, DOMINANT/RECESSIVE, RECESSIVE/DOMINANT.
A variant on one allele of this gene can cause the disease, however a variant on both alleles of this gene can result in a more severe form of the disease/phenotype.
A variant in this gene can cause the disease in males as they have one X-chromosome allele, whereas a variant on both X-chromosome alleles is required to cause the disease in females. Mapped to the following commonly used term from different sources: X-linked recessive.
A variant in this gene can cause the disease in males as they have one X-chromosome allele. A variant on one allele of this gene may also cause the disease in females, though the disease/phenotype may be less severe and may have a later-onset than is seen in males. X-linked inactivation and mosaicism in different tissues complicate whether a female presents with the disease, and can change over their lifetime. This term is the default setting used for X-linked genes, where it is not known definitately whether females require a variant on each allele of this gene in order to be affected. Mapped to the following commonly used terms from different sources: X-linked dominant, x-linked, X-LINKED, X-linked.
The gene is in the mitochondrial genome and variants within this can cause this disease, maternally inherited. Mapped to the following commonly used term from different sources: Mitochondrial.
Mapped to the following commonly used terms from different sources: Unknown, NA, information not provided.
For example, if the mode of inheritance is digenic, please indicate this in the comments and which other gene is involved.